Text Generation
Transformers
PyTorch
Safetensors
Arabic
English
llama
conversational
text-generation-inference
Inference Endpoints
zolicsaki's picture
Update README.md
7994e6b verified
|
raw
history blame
8.25 kB
metadata
license: llama2
datasets:
  - HuggingFaceH4/ultrachat_200k
  - HuggingFaceH4/ultrafeedback_binarized
  - HuggingFaceH4/cai-conversation-harmless
language:
  - ar
  - en

SambaLingo-Arabic-Chat-70B

SambaLingo-Arabic-Chat-70B is a human aligned chat model trained in Arabic and English. It is trained using direct preference optimization on top the base model SambaLingo-Arabic-Base-70B. The base model adapts Llama-2-70b to Arabic by training on 28 billion tokens from the Arabic split of the Cultura-X dataset. Try This Model at SambaLingo-chat-space.

Model Description

Getting Started

Loading Model With Hugging Face

Please make sure to set use_fast=False when loading the tokenizer.

from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("sambanovasystems/SambaLingo-Arabic-Chat-70B", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("sambanovasystems/SambaLingo-Arabic-Chat-70B", device_map="auto", torch_dtype="auto")

Interacting With Model Pipeline

Please make sure to set use_fast=False when loading the tokenizer.

from transformers import pipeline
pipe = pipeline("text-generation", model="sambanovasystems/SambaLingo-Arabic-Chat-70B", device_map="auto", use_fast=False)
messages = [
                {"role": "user", "content": {YOUR_QUESTION}},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt)[0]
outputs = outputs["generated_text"]

Suggested Inference Parameters

  • Temperature: 0.8
  • Repetition penalty: 1.0
  • Top-p: 0.9

Prompting Guidelines

To prompt this model, please use the following chat template:

<|user|>\n{question}</s>\n<|assistant|>\n

Example Prompts and Generations

<|user|>
ูƒูŠู ุชุตู ุงู„ุงู„ูˆุงู† ู„ุดุฎุต ูˆู„ุฏ ุฃุนู…ู‰</s>
<|assistant|>
ู„ูŠุณ ู„ุฏูŠ ุงู„ู‚ุฏุฑุฉ ุนู„ู‰ ุงู„ุฑุคูŠุฉุŒ ูˆู„ูƒู† ูŠู…ูƒู†ู†ูŠ ุชู‚ุฏูŠู… ูˆุตู ู„ู„ุฃู„ูˆุงู† ุจู†ุงุกู‹ ุนู„ู‰ ู…ุง ุชุนู„ู…ุชู‡ ู…ู† ุงู„ุจูŠุงู†ุงุช.\n\nุจุงู„ู†ุณุจุฉ ู„ุดุฎุต ูˆู„ุฏ ุฃุนู…ู‰ุŒ ู‚ุฏ ูŠูƒูˆู† ู…ู† ุงู„ุตุนุจ ูˆุตู ุงู„ุฃู„ูˆุงู† ู„ุฃู†ู‡ุง ู„ู… ุชุฎุชุจุฑู‡ุง ู…ู† ู‚ุจู„. ูˆู…ุน ุฐู„ูƒุŒ ูŠู…ูƒู†ู†ุง ุงุณุชุฎุฏุงู… ุงู„ุงุณุชุนุงุฑุงุช ูˆุงู„ู…ู‚ุงุฑู†ุงุช ู„ู…ุณุงุนุฏุฉ ู‡ุฐุง ุงู„ุดุฎุต ุนู„ู‰ ูู‡ู… ุงู„ุฃู„ูˆุงู†. ุนู„ู‰ ุณุจูŠู„ ุงู„ู…ุซุงู„ุŒ ูŠู…ูƒู†ู†ุง ูˆุตู ุงู„ู„ูˆู† ุงู„ุฃุญู…ุฑ ุจุฃู†ู‡ ุฏุงูุฆ ูˆุญูŠูˆูŠุŒ ู…ุซู„ ู„ู‡ุจ ุงู„ู†ุงุฑ ุฃูˆ ุซู…ุฑุฉ ุงู„ูุฑุงูˆู„ุฉ ุงู„ู†ุงุถุฌุฉ. ูŠู…ูƒู†ู†ุง ูˆุตู ุงู„ู„ูˆู† ุงู„ุฃุฒุฑู‚ ุจุฃู†ู‡ ู‡ุงุฏุฆ ูˆู…ู‡ุฏุฆุŒ ู…ุซู„ ุงู„ุณู…ุงุก ุฃูˆ ุงู„ู…ุญูŠุท. ูŠู…ูƒู†ู†ุง ูˆุตู ุงู„ู„ูˆู† ุงู„ุฃุฎุถุฑ ุจุฃู†ู‡ ู…ู†ุนุด ูˆุทุจูŠุนูŠุŒ ู…ุซู„ ุฃูˆุฑุงู‚ ุงู„ุดุฌุฑ ุฃูˆ ุงู„ุนุดุจ. ูŠู…ูƒู†ู†ุง ูˆุตู ุงู„ู„ูˆู† ุงู„ุฃุตูุฑ ุจุฃู†ู‡ ู…ุดุฑู‚ ูˆู…ุจู‡ุฌุŒ ู…ุซู„ ุงู„ุดู…ุณ ุฃูˆ ุฒู‡ุฑุฉ ุนุจุงุฏ ุงู„ุดู…ุณ. ูŠู…ูƒู†ู†ุง ูˆุตู ุงู„ู„ูˆู† ุงู„ุฃุฑุฌูˆุงู†ูŠ ุจุฃู†ู‡ ู…ู„ูƒูŠ ูˆูุงุฎุฑุŒ ู…ุซู„ ู„ูˆู† ุงู„ุฌูˆุงู‡ุฑ ุฃูˆ ุบุฑูˆุจ ุงู„ุดู…ุณ. ููŠ ุงู„ู†ู‡ุงูŠุฉุŒ ู‚ุฏ ูŠูƒูˆู† ู…ู† ุงู„ุตุนุจ ูˆุตู ุงู„ุฃู„ูˆุงู† ู„ุดุฎุต ูˆู„ุฏ ุฃุนู…ู‰ุŒ ูˆู„ูƒู† ุจุงุณุชุฎุฏุงู… ุงู„ุงุณุชุนุงุฑุงุช ูˆุงู„ู…ู‚ุงุฑู†ุงุชุŒ ูŠู…ูƒู†ู†ุง ู…ุณุงุนุฏุชู‡ู… ุนู„ู‰ ูู‡ู… ุงู„ูุฑูˆู‚ ุงู„ุฏู‚ูŠู‚ุฉ ููŠ ุงู„ุฃู„ูˆุงู† ุจุดูƒู„ ุฃูุถู„.

Training Details

The alignment phase follows the recipe for Zephyr-7B, and comprises two stages: supervised fine-tuning (SFT) and Direct Performance Optimization (DPO).

The SFT phase was done on the ultrachat_200k dataset mixed with the Google translated version of the ultrachat_200k dataset. It was trained for one epoch with global batch size 512 and max sequence length 2048 tokens. We used a linear decay learning rate of 2e-5 and 10% warmup.

The DPO phase was done on the ultrafeedback dataset and cai-conversation-harmless dataset, mixed with 10% of the data Google translated. It was trained with global batch size 32 and for three epochs. We used a linear decay learning rate of 5e-7, 10% warmup and ฮฒ=0.1 as the regularization factor for DPO.

Tokenizer Details

We extended the vocabulary of the base llama model from 32,000 tokens to 57,000 tokens by adding up to 25,000 non-overlapping tokens from the new language.

Evaluation

For evaluation results see our paper: SambaLingo: Teaching Large Language Models New Languages

Uses

Direct Use

Use of this model is governed by the Metaโ€™s Llama 2 Community License Agreement. Please review and accept the license before downloading the model weights.

Out-of-Scope Use

SambaLingo should NOT be used for:

  • Mission-critical applications
  • Applications that involve the safety of others
  • Making highly important decisions

Bias, Risks, and Limitations

Like all LLMs, SambaLingo has certain limitations:

  • Hallucination: Model may sometimes generate responses that contain plausible-sounding but factually incorrect or irrelevant information.
  • Code Switching: The model might unintentionally switch between languages or dialects within a single response, affecting the coherence and understandability of the output.
  • Repetition: The Model may produce repetitive phrases or sentences, leading to less engaging and informative responses.
  • Coding and Math: The model's performance in generating accurate code or solving complex mathematical problems may be limited.
  • Toxicity: The model could inadvertently generate responses containing inappropriate or harmful content.

Acknowledgments

We extend our heartfelt gratitude to the open-source AI community; this endeavor would not have been possible without open source. SambaNova embraces the open-source community and aspires to actively contribute to this initiative.

We would like to give a special thanks to the following groups:

  • Meta for open sourcing LLama 2 and open sourcing FLORES-200 dataset
  • Nguyen et al for open sourcing CulturaX dataset
  • CohereAI for releasing AYA-101 and open sourcing a multilingual instruction tuning dataset
  • EleutherAI for their open source evaluation framework
  • Hugging Face-H4 team for open source the zephyr training recipe and alignment handbook repo

Cite SambaLingo

@misc{csaki2024sambalingo,
      title={SambaLingo: Teaching Large Language Models New Languages}, 
      author={Zoltan Csaki and Bo Li and Jonathan Li and Qiantong Xu and Pian Pawakapan and Leon Zhang and Yun Du and Hengyu Zhao and Changran Hu and Urmish Thakker},
      year={2024},
      eprint={2404.05829},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}