|
--- |
|
base_model: openai/whisper-small |
|
datasets: |
|
- mozilla-foundation/common_voice_11_0 |
|
language: |
|
- ru |
|
license: apache-2.0 |
|
metrics: |
|
- wer |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: Whisper Small Ru - v4 |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: Common Voice 11.0 |
|
type: mozilla-foundation/common_voice_11_0 |
|
config: ru |
|
split: test |
|
args: 'config: ru, split: test' |
|
metrics: |
|
- type: wer |
|
value: 11.993477274677849 |
|
name: Wer |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Small Ru - v4 |
|
|
|
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2167 |
|
- Wer Ortho: 16.3879 |
|
- Wer: 11.9935 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 50 |
|
- training_steps: 5000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:---------:|:-------:| |
|
| 0.1695 | 0.4921 | 500 | 0.2079 | 17.6749 | 13.3434 | |
|
| 0.1548 | 0.9843 | 1000 | 0.1894 | 16.4416 | 12.2240 | |
|
| 0.0704 | 1.4764 | 1500 | 0.1878 | 16.1107 | 12.0106 | |
|
| 0.0722 | 1.9685 | 2000 | 0.1854 | 15.7395 | 11.7887 | |
|
| 0.0328 | 2.4606 | 2500 | 0.1927 | 15.7822 | 11.6404 | |
|
| 0.0344 | 2.9528 | 3000 | 0.1929 | 15.5746 | 11.6060 | |
|
| 0.0147 | 3.4449 | 3500 | 0.2059 | 15.6992 | 11.5141 | |
|
| 0.0148 | 3.9370 | 4000 | 0.2046 | 15.7859 | 11.5962 | |
|
| 0.0067 | 4.4291 | 4500 | 0.2169 | 16.0374 | 11.6784 | |
|
| 0.0078 | 4.9213 | 5000 | 0.2167 | 16.3879 | 11.9935 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.3 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|