metadata
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- generator
metrics:
- wer
model-index:
- name: ASR-whisper-small-1
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: generator
type: generator
config: default
split: train
args: default
metrics:
- name: Wer
type: wer
value: 0.49970056294166965
ASR-whisper-small-1
This model is a fine-tuned version of openai/whisper-small on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 0.9304
- Wer: 0.4997
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 700
- training_steps: 3000
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.6949 | 0.33 | 1000 | 1.6964 | 0.9265 |
0.9422 | 1.31 | 2000 | 1.1670 | 0.7292 |
0.4947 | 2.28 | 3000 | 0.9304 | 0.4997 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.0
- Datasets 2.14.4
- Tokenizers 0.13.3