Model Card for ReactionT5v2-forward

This is a ReactionT5 pre-trained to predict the products of reactions. You can use the demo here.

Model Sources

Uses

You can use this model for forward reaction prediction or fine-tune this model with your dataset.

How to Get Started with the Model

Use the code below to get started with the model.

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("sagawa/ReactionT5v2-forward", return_tensors="pt")
model = AutoModelForSeq2SeqLM.from_pretrained("sagawa/ReactionT5v2-forward")

inp = tokenizer('REACTANT:COC(=O)C1=CCCN(C)C1.O.[Al+3].[H-].[Li+].[Na+].[OH-]REAGENT:C1CCOC1', return_tensors='pt')
output = model.generate(**inp, num_beams=1, num_return_sequences=1, return_dict_in_generate=True, output_scores=True)
output = tokenizer.decode(output['sequences'][0], skip_special_tokens=True).replace(' ', '').rstrip('.')
output # 'CN1CCC=C(CO)C1'

Training Details

Training Procedure

We used the Open Reaction Database (ORD) dataset for model training. In addition, we used USPTO_MIT dataset's test split to prevent data leakage. The command used for training is the following. For more information about data preprocessing and training, please refer to the paper and GitHub repository.

cd task_forward
python train.py \
    --output_dir='t5' \
    --epochs=100 \
    --lr=1e-3 \
    --batch_size=32 \
    --input_max_len=150 \
    --target_max_len=100 \
    --weight_decay=0.01 \
    --evaluation_strategy='epoch' \
    --save_strategy='epoch' \
    --logging_strategy='epoch' \
    --train_data_path='../data/preprocessed_ord_train.csv' \
    --valid_data_path='../data/preprocessed_ord_valid.csv' \
    --test_data_path='../data/preprocessed_ord_test.csv' \
    --USPTO_test_data_path='../data/USPTO_MIT/MIT_separated/test.csv' \
    --disable_tqdm \
    --pretrained_model_name_or_path='sagawa/CompoundT5'

Results

Model Training set Test set Top-1 [% acc.] Top-2 [% acc.] Top-3 [% acc.] Top-5 [% acc.]
Sequence-to-sequence USPTO_MIT USPTO_MIT 80.3 84.7 86.2 87.5
WLDN USPTO_MIT USPTO_MIT 80.6 (85.6) 90.5 92.8 93.4
Molecular Transformer USPTO_MIT USPTO_MIT 88.8 92.6 – 94.4
T5Chem USPTO_MIT USPTO_MIT 90.4 94.2 – 96.4
CompoundT5 USPTO_MIT USPTO_MIT 86.6 89.5 90.4 91.2
ReactionT5 (This model) - USPTO_MIT 92.8 95.6 96.4 97.1
ReactionT5 USPTO_MIT USPTO_MIT 97.5 98.6 98.8 99.0

Performance comparison of Compound T5, ReactionT5, and other models in product prediction.

Citation

arxiv link: https://arxiv.org/abs/2311.06708

@misc{sagawa2023reactiont5,  
      title={ReactionT5: a large-scale pre-trained model towards application of limited reaction data}, 
      author={Tatsuya Sagawa and Ryosuke Kojima},  
      year={2023},  
      eprint={2311.06708},  
      archivePrefix={arXiv},  
      primaryClass={physics.chem-ph}  
}
Downloads last month
664
Safetensors
Model size
199M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using sagawa/ReactionT5v2-forward 1