small distill model
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
model_name = "BestPechenka/erida-luminia"
custom_config = {
"rope_scaling": {
"type": "llama3",
"factor": 8.0,
"high_freq_factor": 4.0,
"low_freq_factor": 1.0,
"original_max_position_embeddings": 8192,
"rope_type": "llama3"
}
}
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
config.update(custom_config)
model = AutoModelForCausalLM.from_pretrained(
model_name,
config=config,
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
saiga_prompt = """Напишите подходящий ответ!
{dialog}
Ассистент: """
dialog = []
def format_dialog(dialog):
formatted_dialog = ""
for turn in dialog:
if turn["role"] == "user":
formatted_dialog += f"Пользователь: {turn['content']}\n\n"
elif turn["role"] == "bot":
formatted_dialog += f"Ассистент: {turn['content']}\n\n"
return formatted_dialog
def generate_text(prompt):
inputs = tokenizer([saiga_prompt.format(dialog=format_dialog(dialog) + prompt)], return_tensors="pt").to(
model.device)
outputs = model.generate(**inputs, max_new_tokens=
64)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
while True:
user_input = input(">>> ")
dialog.append({"role": "bot", "content": "Привет! Меня зовут erida-luminia."})
dialog.append({"role": "user", "content": user_input})
generated_text = generate_text(user_input)
print(generated_text)
dialog.append({"role": "bot", "content": generated_text})
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.