rowjak's picture
End of training
48a0a29 verified
metadata
library_name: transformers
license: apache-2.0
base_model: anton-l/wav2vec2-base-ft-keyword-spotting
tags:
  - generated_from_trainer
datasets:
  - minds14
metrics:
  - accuracy
model-index:
  - name: wav2vec2-minds14-audio-classification-all
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: minds14
          type: minds14
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.09730722154222766

wav2vec2-minds14-audio-classification-all

This model is a fine-tuned version of anton-l/wav2vec2-base-ft-keyword-spotting on the minds14 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6367
  • Accuracy: 0.0973

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.6374 0.9951 51 2.6375 0.0894
2.6347 1.9902 102 2.6334 0.0900
2.6352 2.9854 153 2.6323 0.0930
2.6282 4.0 205 2.6280 0.0924
2.6224 4.9951 256 2.6398 0.0894
2.6122 5.9902 307 2.6306 0.0912
2.6225 6.9854 358 2.6325 0.0906
2.6196 8.0 410 2.6358 0.0961
2.6154 8.9951 461 2.6357 0.0924
2.6028 9.9512 510 2.6367 0.0973

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1