|
--- |
|
license: apache-2.0 |
|
base_model: sshleifer/distilbart-cnn-6-6 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- wcep-10 |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: thesis-bart-finetuned-on-original-wcep |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: wcep-10 |
|
type: wcep-10 |
|
config: roberta |
|
split: validation |
|
args: roberta |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 37.2224 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# thesis-bart-finetuned-on-original-wcep |
|
|
|
This model is a fine-tuned version of [sshleifer/distilbart-cnn-6-6](https://huggingface.co/sshleifer/distilbart-cnn-6-6) on the wcep-10 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.9981 |
|
- Rouge1: 37.2224 |
|
- Rouge2: 16.5575 |
|
- Rougel: 26.7904 |
|
- Rougelsum: 30.3497 |
|
- Gen Len: 67.5627 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 2.0801 | 1.0 | 510 | 2.0119 | 36.4915 | 16.0165 | 26.3565 | 29.7397 | 67.9882 | |
|
| 1.7597 | 2.0 | 1020 | 1.9868 | 36.9513 | 16.3776 | 26.4974 | 30.1234 | 68.3961 | |
|
| 1.5997 | 3.0 | 1530 | 1.9981 | 37.2224 | 16.5575 | 26.7904 | 30.3497 | 67.5627 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|