roberta-base-finetuned-ner

This model is a fine-tuned version of FacebookAI/roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9020
  • Precision: 0.6105
  • Recall: 0.6545
  • F1: 0.6317
  • Accuracy: 0.8984

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 63 0.7317 0.6254 0.6378 0.6315 0.9019
No log 2.0 126 0.7668 0.6130 0.6482 0.6301 0.9
No log 3.0 189 0.7691 0.6123 0.6545 0.6327 0.8992
No log 4.0 252 0.7907 0.6061 0.6232 0.6145 0.8956
No log 5.0 315 0.8165 0.5798 0.6482 0.6121 0.8957
No log 6.0 378 0.7758 0.6008 0.6534 0.6260 0.8999
No log 7.0 441 0.8109 0.6018 0.6357 0.6183 0.8984
0.0018 8.0 504 0.7892 0.6018 0.6388 0.6197 0.8992
0.0018 9.0 567 0.8051 0.5878 0.6461 0.6156 0.8964
0.0018 10.0 630 0.7913 0.6123 0.6430 0.6273 0.8999
0.0018 11.0 693 0.8088 0.6012 0.6545 0.6267 0.8979
0.0018 12.0 756 0.8206 0.6072 0.6534 0.6295 0.8974
0.0018 13.0 819 0.8240 0.5858 0.6482 0.6155 0.8962
0.0018 14.0 882 0.8369 0.5961 0.6409 0.6177 0.8971
0.0018 15.0 945 0.8515 0.5951 0.6367 0.6152 0.8960
0.0012 16.0 1008 0.8743 0.5881 0.6096 0.5987 0.8949
0.0012 17.0 1071 0.8835 0.5945 0.6336 0.6134 0.8960
0.0012 18.0 1134 0.8633 0.5803 0.6409 0.6091 0.8946
0.0012 19.0 1197 0.8553 0.5899 0.6127 0.6011 0.8942
0.0012 20.0 1260 0.8715 0.5841 0.6232 0.6030 0.8938
0.0012 21.0 1323 0.8922 0.5881 0.6305 0.6086 0.8909
0.0012 22.0 1386 0.8716 0.5926 0.6482 0.6191 0.8935
0.0012 23.0 1449 0.8853 0.5915 0.6545 0.6214 0.8942
0.0008 24.0 1512 0.8494 0.6132 0.6388 0.6258 0.8973
0.0008 25.0 1575 0.8698 0.5901 0.6461 0.6168 0.8937
0.0008 26.0 1638 0.8622 0.5996 0.6409 0.6196 0.8946
0.0008 27.0 1701 0.8517 0.6057 0.6430 0.6238 0.8970
0.0008 28.0 1764 0.8696 0.6108 0.6388 0.6245 0.8977
0.0008 29.0 1827 0.8753 0.5979 0.6503 0.6230 0.8978
0.0008 30.0 1890 0.8519 0.6026 0.6409 0.6211 0.8973
0.0008 31.0 1953 0.8588 0.6086 0.6524 0.6297 0.8992
0.0007 32.0 2016 0.8713 0.5968 0.6305 0.6132 0.8970
0.0007 33.0 2079 0.8761 0.5982 0.6388 0.6179 0.8975
0.0007 34.0 2142 0.8733 0.5947 0.6357 0.6145 0.8967
0.0007 35.0 2205 0.8793 0.5996 0.6378 0.6181 0.8977
0.0007 36.0 2268 0.8959 0.5950 0.6503 0.6214 0.8971
0.0007 37.0 2331 0.8795 0.6078 0.6534 0.6298 0.8986
0.0007 38.0 2394 0.8856 0.6208 0.6597 0.6397 0.9
0.0007 39.0 2457 0.8897 0.6155 0.6534 0.6339 0.8992
0.0005 40.0 2520 0.8901 0.6098 0.6524 0.6304 0.8988
0.0005 41.0 2583 0.8881 0.6142 0.6482 0.6308 0.8984
0.0005 42.0 2646 0.8857 0.6193 0.6503 0.6344 0.8989
0.0005 43.0 2709 0.8911 0.6121 0.6524 0.6316 0.8973
0.0005 44.0 2772 0.8988 0.6015 0.6493 0.6245 0.8968
0.0005 45.0 2835 0.8927 0.6169 0.6472 0.6317 0.8978
0.0005 46.0 2898 0.8974 0.6137 0.6649 0.6383 0.8978
0.0005 47.0 2961 0.8991 0.6115 0.6555 0.6327 0.8968
0.0004 48.0 3024 0.9001 0.6087 0.6545 0.6308 0.8966
0.0004 49.0 3087 0.9015 0.6071 0.6566 0.6309 0.8968
0.0004 50.0 3150 0.8986 0.6109 0.6524 0.6310 0.8968
0.0004 51.0 3213 0.9014 0.6083 0.6597 0.6329 0.8984
0.0004 52.0 3276 0.9018 0.6091 0.6587 0.6329 0.8988
0.0004 53.0 3339 0.8991 0.6107 0.6534 0.6314 0.8986
0.0004 54.0 3402 0.9000 0.6084 0.6534 0.6301 0.8985
0.0004 55.0 3465 0.9015 0.6081 0.6545 0.6305 0.8988
0.0003 56.0 3528 0.9019 0.6054 0.6503 0.6271 0.8982
0.0003 57.0 3591 0.9011 0.6086 0.6524 0.6297 0.8982
0.0003 58.0 3654 0.9017 0.6080 0.6524 0.6294 0.8984
0.0003 59.0 3717 0.9019 0.6121 0.6555 0.6331 0.8985
0.0003 60.0 3780 0.9020 0.6105 0.6545 0.6317 0.8984

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.1
  • Datasets 2.18.0
  • Tokenizers 0.20.0
Downloads last month
5
Safetensors
Model size
124M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for roncmic/roberta-base-finetuned-ner

Finetuned
(1627)
this model