distilroberta-base-climate-detector-finetuned-ner
This model is a fine-tuned version of climatebert/distilroberta-base-climate-detector on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7681
- Precision: 0.6184
- Recall: 0.6816
- F1: 0.6485
- Accuracy: 0.9046
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 80
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 63 | 0.6432 | 0.6034 | 0.6670 | 0.6336 | 0.9018 |
No log | 2.0 | 126 | 0.6383 | 0.6167 | 0.6618 | 0.6385 | 0.9046 |
No log | 3.0 | 189 | 0.6370 | 0.6219 | 0.6764 | 0.648 | 0.9060 |
No log | 4.0 | 252 | 0.6658 | 0.5821 | 0.6775 | 0.6261 | 0.8988 |
No log | 5.0 | 315 | 0.6742 | 0.5990 | 0.6566 | 0.6265 | 0.9019 |
No log | 6.0 | 378 | 0.6467 | 0.6127 | 0.6722 | 0.6411 | 0.9044 |
No log | 7.0 | 441 | 0.6676 | 0.6024 | 0.6848 | 0.6409 | 0.9040 |
0.0043 | 8.0 | 504 | 0.6633 | 0.5824 | 0.6754 | 0.6254 | 0.9012 |
0.0043 | 9.0 | 567 | 0.6581 | 0.6078 | 0.6827 | 0.6431 | 0.9027 |
0.0043 | 10.0 | 630 | 0.6672 | 0.6032 | 0.6681 | 0.6340 | 0.9035 |
0.0043 | 11.0 | 693 | 0.6648 | 0.6192 | 0.6858 | 0.6508 | 0.9064 |
0.0043 | 12.0 | 756 | 0.6556 | 0.6174 | 0.6806 | 0.6475 | 0.9064 |
0.0043 | 13.0 | 819 | 0.6698 | 0.6114 | 0.6733 | 0.6408 | 0.9064 |
0.0043 | 14.0 | 882 | 0.7113 | 0.6024 | 0.6879 | 0.6423 | 0.9035 |
0.0043 | 15.0 | 945 | 0.6913 | 0.5962 | 0.6827 | 0.6365 | 0.9026 |
0.0022 | 16.0 | 1008 | 0.7037 | 0.5941 | 0.6691 | 0.6294 | 0.9025 |
0.0022 | 17.0 | 1071 | 0.7171 | 0.6069 | 0.6816 | 0.6421 | 0.9042 |
0.0022 | 18.0 | 1134 | 0.6988 | 0.5960 | 0.6608 | 0.6267 | 0.9022 |
0.0022 | 19.0 | 1197 | 0.6803 | 0.6142 | 0.6879 | 0.6489 | 0.9056 |
0.0022 | 20.0 | 1260 | 0.7230 | 0.5924 | 0.6795 | 0.6330 | 0.9007 |
0.0022 | 21.0 | 1323 | 0.7249 | 0.5925 | 0.6587 | 0.6238 | 0.9019 |
0.0022 | 22.0 | 1386 | 0.7053 | 0.5880 | 0.6660 | 0.6246 | 0.9015 |
0.0022 | 23.0 | 1449 | 0.7108 | 0.6097 | 0.6848 | 0.6450 | 0.9026 |
0.0016 | 24.0 | 1512 | 0.7155 | 0.5963 | 0.6722 | 0.6320 | 0.9038 |
0.0016 | 25.0 | 1575 | 0.7228 | 0.6038 | 0.6649 | 0.6329 | 0.9018 |
0.0016 | 26.0 | 1638 | 0.7411 | 0.5927 | 0.6608 | 0.6249 | 0.9005 |
0.0016 | 27.0 | 1701 | 0.7427 | 0.5976 | 0.6743 | 0.6336 | 0.9031 |
0.0016 | 28.0 | 1764 | 0.7455 | 0.6082 | 0.6806 | 0.6424 | 0.9029 |
0.0016 | 29.0 | 1827 | 0.7326 | 0.6075 | 0.6754 | 0.6396 | 0.9040 |
0.0016 | 30.0 | 1890 | 0.7594 | 0.6101 | 0.6681 | 0.6378 | 0.9025 |
0.0016 | 31.0 | 1953 | 0.7516 | 0.6024 | 0.6691 | 0.6340 | 0.9056 |
0.0011 | 32.0 | 2016 | 0.7382 | 0.6053 | 0.6722 | 0.6370 | 0.9042 |
0.0011 | 33.0 | 2079 | 0.7523 | 0.6028 | 0.6733 | 0.6361 | 0.9023 |
0.0011 | 34.0 | 2142 | 0.7516 | 0.5983 | 0.6764 | 0.6350 | 0.9014 |
0.0011 | 35.0 | 2205 | 0.7380 | 0.6060 | 0.6743 | 0.6383 | 0.9034 |
0.0011 | 36.0 | 2268 | 0.7636 | 0.6030 | 0.6691 | 0.6343 | 0.9042 |
0.0011 | 37.0 | 2331 | 0.7734 | 0.6009 | 0.6743 | 0.6355 | 0.9014 |
0.0011 | 38.0 | 2394 | 0.7619 | 0.6039 | 0.6764 | 0.6381 | 0.9029 |
0.0011 | 39.0 | 2457 | 0.7605 | 0.6084 | 0.6649 | 0.6354 | 0.9025 |
0.001 | 40.0 | 2520 | 0.7642 | 0.6061 | 0.6681 | 0.6356 | 0.9056 |
0.001 | 41.0 | 2583 | 0.7526 | 0.6202 | 0.6681 | 0.6432 | 0.9052 |
0.001 | 42.0 | 2646 | 0.7774 | 0.6021 | 0.6681 | 0.6333 | 0.9012 |
0.001 | 43.0 | 2709 | 0.7645 | 0.6033 | 0.6795 | 0.6392 | 0.9014 |
0.001 | 44.0 | 2772 | 0.7594 | 0.6113 | 0.6764 | 0.6422 | 0.9052 |
0.001 | 45.0 | 2835 | 0.7616 | 0.6066 | 0.6712 | 0.6373 | 0.9025 |
0.001 | 46.0 | 2898 | 0.7566 | 0.6071 | 0.6743 | 0.6390 | 0.9045 |
0.001 | 47.0 | 2961 | 0.7614 | 0.6082 | 0.6775 | 0.6410 | 0.9046 |
0.0006 | 48.0 | 3024 | 0.7800 | 0.6159 | 0.6545 | 0.6346 | 0.9026 |
0.0006 | 49.0 | 3087 | 0.7841 | 0.6043 | 0.6681 | 0.6346 | 0.9026 |
0.0006 | 50.0 | 3150 | 0.7697 | 0.6035 | 0.6848 | 0.6416 | 0.9040 |
0.0006 | 51.0 | 3213 | 0.7667 | 0.6121 | 0.6785 | 0.6436 | 0.9031 |
0.0006 | 52.0 | 3276 | 0.7769 | 0.5985 | 0.6691 | 0.6318 | 0.9030 |
0.0006 | 53.0 | 3339 | 0.7842 | 0.6023 | 0.6701 | 0.6344 | 0.9030 |
0.0006 | 54.0 | 3402 | 0.7934 | 0.5856 | 0.6534 | 0.6177 | 0.9008 |
0.0006 | 55.0 | 3465 | 0.7906 | 0.6067 | 0.6649 | 0.6345 | 0.9041 |
0.0007 | 56.0 | 3528 | 0.7948 | 0.5885 | 0.6628 | 0.6235 | 0.9000 |
0.0007 | 57.0 | 3591 | 0.7703 | 0.6071 | 0.6628 | 0.6337 | 0.9027 |
0.0007 | 58.0 | 3654 | 0.7581 | 0.6089 | 0.6712 | 0.6385 | 0.9038 |
0.0007 | 59.0 | 3717 | 0.7659 | 0.6004 | 0.6681 | 0.6324 | 0.9018 |
0.0007 | 60.0 | 3780 | 0.7633 | 0.6069 | 0.6754 | 0.6393 | 0.9020 |
0.0007 | 61.0 | 3843 | 0.7606 | 0.6087 | 0.6722 | 0.6389 | 0.9034 |
0.0007 | 62.0 | 3906 | 0.7586 | 0.6256 | 0.6733 | 0.6486 | 0.9060 |
0.0007 | 63.0 | 3969 | 0.7560 | 0.6175 | 0.6639 | 0.6398 | 0.9038 |
0.0009 | 64.0 | 4032 | 0.7556 | 0.6183 | 0.6628 | 0.6398 | 0.9023 |
0.0009 | 65.0 | 4095 | 0.7544 | 0.6189 | 0.6764 | 0.6464 | 0.9048 |
0.0009 | 66.0 | 4158 | 0.7590 | 0.6158 | 0.6743 | 0.6437 | 0.9045 |
0.0009 | 67.0 | 4221 | 0.7615 | 0.6146 | 0.6691 | 0.6407 | 0.9044 |
0.0009 | 68.0 | 4284 | 0.7634 | 0.6135 | 0.6712 | 0.6411 | 0.9038 |
0.0009 | 69.0 | 4347 | 0.7646 | 0.6240 | 0.6670 | 0.6448 | 0.9046 |
0.0009 | 70.0 | 4410 | 0.7686 | 0.6195 | 0.6712 | 0.6443 | 0.9040 |
0.0009 | 71.0 | 4473 | 0.7685 | 0.6152 | 0.6691 | 0.6410 | 0.9041 |
0.0007 | 72.0 | 4536 | 0.7678 | 0.6162 | 0.6670 | 0.6406 | 0.9035 |
0.0007 | 73.0 | 4599 | 0.7712 | 0.6128 | 0.6775 | 0.6435 | 0.9038 |
0.0007 | 74.0 | 4662 | 0.7713 | 0.6091 | 0.6733 | 0.6396 | 0.9029 |
0.0007 | 75.0 | 4725 | 0.7690 | 0.6181 | 0.6827 | 0.6488 | 0.9052 |
0.0007 | 76.0 | 4788 | 0.7684 | 0.6201 | 0.6816 | 0.6494 | 0.9051 |
0.0007 | 77.0 | 4851 | 0.7688 | 0.6157 | 0.6806 | 0.6465 | 0.9048 |
0.0007 | 78.0 | 4914 | 0.7685 | 0.6134 | 0.6806 | 0.6452 | 0.9041 |
0.0007 | 79.0 | 4977 | 0.7683 | 0.6163 | 0.6806 | 0.6468 | 0.9041 |
0.0005 | 80.0 | 5040 | 0.7681 | 0.6184 | 0.6816 | 0.6485 | 0.9046 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.4.1
- Datasets 2.18.0
- Tokenizers 0.20.0
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.