|
--- |
|
license: other |
|
library_name: transformers |
|
base_model: |
|
- Qwen/Qwen2.5-72B-Instruct |
|
license_name: qwen |
|
license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE |
|
model-index: |
|
- name: Replete-LLM-V2.5-Qwen-72b_Duplicated |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: IFEval (0-Shot) |
|
type: HuggingFaceH4/ifeval |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: inst_level_strict_acc and prompt_level_strict_acc |
|
value: 71.55 |
|
name: strict accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Replete-LLM-V2.5-Qwen-72b_Duplicated |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: BBH (3-Shot) |
|
type: BBH |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc_norm |
|
value: 61.27 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Replete-LLM-V2.5-Qwen-72b_Duplicated |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MATH Lvl 5 (4-Shot) |
|
type: hendrycks/competition_math |
|
args: |
|
num_few_shot: 4 |
|
metrics: |
|
- type: exact_match |
|
value: 47.58 |
|
name: exact match |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Replete-LLM-V2.5-Qwen-72b_Duplicated |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GPQA (0-shot) |
|
type: Idavidrein/gpqa |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 19.8 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Replete-LLM-V2.5-Qwen-72b_Duplicated |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MuSR (0-shot) |
|
type: TAUR-Lab/MuSR |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 17.32 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Replete-LLM-V2.5-Qwen-72b_Duplicated |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU-PRO (5-shot) |
|
type: TIGER-Lab/MMLU-Pro |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 54.83 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Replete-LLM-V2.5-Qwen-72b_Duplicated |
|
name: Open LLM Leaderboard |
|
--- |
|
# Rombos-LLM-V2.5-Qwen-72b |
|
|
|
![image/jpeg](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F642cc1c253e76b4c2286c58e%2Fwp9qOi2K2WGzkey0I3SgH.jpeg%3C%2Fspan%3E)%3C!-- HTML_TAG_END --> |
|
|
|
Rombos-LLM-V2.5-Qwen-72b is a continues finetuned version of Qwen2.5-72B. I noticed recently that the Qwen team did not learn from my methods of continuous finetuning, the great benefits, and no downsides of it. So I took it upon myself to merge the instruct model with the base model myself using the *Ties* merge method |
|
|
|
This version of the model shows higher performance than the original instruct and base models. |
|
|
|
Quants: (Coming soon) |
|
|
|
GGUF: https://huggingface.co/bartowski/Replete-LLM-V2.5-Qwen-72b-GGUF |
|
|
|
EXL2: |
|
|
|
Benchmarks: (Coming soon) |
|
|
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_rombodawg__Replete-LLM-V2.5-Qwen-72b_Duplicated) |
|
|
|
| Metric |Value| |
|
|-------------------|----:| |
|
|Avg. |45.39| |
|
|IFEval (0-Shot) |71.55| |
|
|BBH (3-Shot) |61.27| |
|
|MATH Lvl 5 (4-Shot)|47.58| |
|
|GPQA (0-shot) |19.80| |
|
|MuSR (0-shot) |17.32| |
|
|MMLU-PRO (5-shot) |54.83| |
|
|
|
|