bert-base-multilingual-uncased-ner-silvanus
This model is a fine-tuned version of bert-base-multilingual-uncased on the id_nergrit_corpus dataset. It achieves the following results on the evaluation set:
- Loss: 0.0662
- Precision: 0.9022
- Recall: 0.9190
- F1: 0.9105
- Accuracy: 0.9838
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.1429 | 1.0 | 827 | 0.0587 | 0.8885 | 0.9075 | 0.8979 | 0.9829 |
0.0464 | 2.0 | 1654 | 0.0609 | 0.9081 | 0.9103 | 0.9092 | 0.9846 |
0.0288 | 3.0 | 2481 | 0.0662 | 0.9022 | 0.9190 | 0.9105 | 0.9838 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for rollerhafeezh-amikom/bert-base-multilingual-uncased-ner-silvanus
Base model
google-bert/bert-base-multilingual-uncasedDataset used to train rollerhafeezh-amikom/bert-base-multilingual-uncased-ner-silvanus
Evaluation results
- Precision on id_nergrit_corpusvalidation set self-reported0.902
- Recall on id_nergrit_corpusvalidation set self-reported0.919
- F1 on id_nergrit_corpusvalidation set self-reported0.911
- Accuracy on id_nergrit_corpusvalidation set self-reported0.984