Converted and quantized.
Custom Embedding Class for Optimum ONNX Runtime
This document provides the implementation of a custom embedding class designed to work with the Optimum ONNX Runtime model.
from typing import List
from llama_index.embeddings.huggingface_optimum import OptimumEmbedding
import asyncio
class CustomEmbedding:
def __init__(self, folder_name: str):
"""Initialize the embedding model."""
self.embed_model = OptimumEmbedding(folder_name=folder_name)
async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
"""Asynchronously embed a list of documents."""
loop = asyncio.get_event_loop()
return await loop.run_in_executor(None, self.embed_documents, texts)
async def aembed_query(self, text: str) -> List[float]:
"""Asynchronously embed a single query."""
loop = asyncio.get_event_loop()
return await loop.run_in_executor(None, self.embed_query, text)
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed a list of documents."""
return [self.embed_model.get_text_embedding(text) for text in texts]
def embed_query(self, text: str) -> List[float]:
"""Embed a single query."""
return self.embed_model.get_text_embedding(text)
# Example Usage
custom_embeddings = CustomEmbedding(folder_name="./optimum_model")
Key Features
Initialization:
- The
CustomEmbedding
class initializes theOptimumEmbedding
instance with the specifiedfolder_name
for the preloaded model.
- The
Asynchronous Methods:
aembed_documents(texts: List[str])
: Asynchronously embeds a list of documents and returns their embeddings.aembed_query(text: str)
: Asynchronously embeds a single query and returns its embedding.
Synchronous Methods:
embed_documents(texts: List[str])
: Embeds a list of documents and returns their embeddings.embed_query(text: str)
: Embeds a single query and returns its embedding.
Usage
Folder Name: Replace
"./optimum_model"
with the path to your locally stored Optimum ONNX Runtime model.Example:
# Embed a single query query_embedding = custom_embeddings.embed_query("Hello World!") # Embed multiple documents document_embeddings = custom_embeddings.embed_documents(["Document 1", "Document 2"])
- Downloads last month
- 12