classify-clickbait
This model is a fine-tuned version of albert/albert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0010
- Accuracy: 1.0
- F1: 1.0
- Precision: 1.0
- Recall: 1.0
- Accuracy Label Clickbait: 1.0
- Accuracy Label Factual: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Accuracy Label Clickbait | Accuracy Label Factual |
---|---|---|---|---|---|---|---|---|---|
0.1089 | 1.1628 | 100 | 0.0617 | 0.9884 | 0.9884 | 0.9884 | 0.9884 | 0.9828 | 0.9941 |
0.0118 | 2.3256 | 200 | 0.0093 | 0.9971 | 0.9971 | 0.9971 | 0.9971 | 0.9943 | 1.0 |
Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 107
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for rkotari/classify-clickbait
Base model
albert/albert-base-v2