SentenceTransformer based on FacebookAI/roberta-large-mnli
This is a sentence-transformers model finetuned from FacebookAI/roberta-large-mnli. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: FacebookAI/roberta-large-mnli
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("richie-ghost/sbert_facebook_large_mnli_openVino2")
# Run inference
sentences = [
'A motorbike rider is barreling across a grass lawn.',
'The rider is outdoors on a motorbike.',
'The girl is wearing a shirt.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8457 |
spearman_cosine | 0.8101 |
pearson_manhattan | 0.8108 |
spearman_manhattan | 0.7917 |
pearson_euclidean | 0.8106 |
spearman_euclidean | 0.7916 |
pearson_dot | 0.8567 |
spearman_dot | 0.8163 |
pearson_max | 0.8567 |
spearman_max | 0.8163 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 72,338 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string int details - min: 5 tokens
- mean: 18.11 tokens
- max: 82 tokens
- min: 5 tokens
- mean: 12.82 tokens
- max: 65 tokens
- 0: ~50.70%
- 1: ~49.30%
- Samples:
sentence_0 sentence_1 label Hows would you create strategies and tactics in various combat situations?
I have girlfriend and their parents accepted for my marriage, I m working in Nagpur but her parents wanted me to shift Bangalore? Is it valid wish?
0
Man from the army speaking with civilian women.
The man is a sergeant
0
An old man with a white shirt and black pants sits on a chair in the opening of a stone tunnel.
Someone has black pants.
1
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 4multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | eval_spearman_max |
---|---|---|---|
0.1106 | 500 | 0.1845 | 0.6681 |
0.2211 | 1000 | 0.0942 | 0.7711 |
0.3317 | 1500 | 0.0821 | 0.6355 |
0.4423 | 2000 | 0.0794 | 0.7283 |
0.5529 | 2500 | 0.0788 | 0.7129 |
0.6634 | 3000 | 0.0737 | 0.7853 |
0.7740 | 3500 | 0.07 | 0.7013 |
0.8846 | 4000 | 0.0686 | 0.7809 |
0.9951 | 4500 | 0.0683 | 0.7578 |
1.0 | 4522 | - | 0.7976 |
1.1057 | 5000 | 0.07 | 0.7749 |
1.2163 | 5500 | 0.0656 | 0.7826 |
1.3268 | 6000 | 0.0587 | 0.8032 |
1.4374 | 6500 | 0.0584 | 0.7666 |
1.5480 | 7000 | 0.0582 | 0.7917 |
1.6586 | 7500 | 0.0546 | 0.7945 |
1.7691 | 8000 | 0.0528 | 0.7786 |
1.8797 | 8500 | 0.051 | 0.7732 |
1.9903 | 9000 | 0.0527 | 0.7996 |
2.0 | 9044 | - | 0.7898 |
2.1008 | 9500 | 0.0509 | 0.7957 |
2.2114 | 10000 | 0.0492 | 0.7988 |
2.3220 | 10500 | 0.0451 | 0.8044 |
2.4326 | 11000 | 0.0443 | 0.7961 |
2.5431 | 11500 | 0.0445 | 0.7975 |
2.6537 | 12000 | 0.0433 | 0.8054 |
2.7643 | 12500 | 0.0394 | 0.7890 |
2.8748 | 13000 | 0.0387 | 0.8020 |
2.9854 | 13500 | 0.0401 | 0.8096 |
3.0 | 13566 | - | 0.8087 |
3.0960 | 14000 | 0.0399 | 0.8098 |
3.2065 | 14500 | 0.039 | 0.8077 |
3.3171 | 15000 | 0.0346 | 0.8021 |
3.4277 | 15500 | 0.0339 | 0.8082 |
3.5383 | 16000 | 0.0347 | 0.8150 |
3.6488 | 16500 | 0.0352 | 0.8144 |
3.7594 | 17000 | 0.032 | 0.8141 |
3.8700 | 17500 | 0.0326 | 0.8151 |
3.9805 | 18000 | 0.0318 | 0.8162 |
4.0 | 18088 | - | 0.8163 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 1
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for richie-ghost/sbert_facebook_large_mnli_openVino2
Base model
FacebookAI/roberta-large-mnliEvaluation results
- Pearson Cosine on evalself-reported0.846
- Spearman Cosine on evalself-reported0.810
- Pearson Manhattan on evalself-reported0.811
- Spearman Manhattan on evalself-reported0.792
- Pearson Euclidean on evalself-reported0.811
- Spearman Euclidean on evalself-reported0.792
- Pearson Dot on evalself-reported0.857
- Spearman Dot on evalself-reported0.816
- Pearson Max on evalself-reported0.857
- Spearman Max on evalself-reported0.816