language:
- pt
license: apache-2.0
library_name: transformers
tags:
- portugues
- portuguese
- QA
- instruct
- phi
base_model: meta-llama/Llama-2-13b
datasets:
- rhaymison/superset
pipeline_tag: text-generation
model-index:
- name: portuguese-tom-cat-13b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: ENEM Challenge (No Images)
type: eduagarcia/enem_challenge
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 42.76
name: accuracy
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-tom-cat-13b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BLUEX (No Images)
type: eduagarcia-temp/BLUEX_without_images
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 45.62
name: accuracy
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-tom-cat-13b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: OAB Exams
type: eduagarcia/oab_exams
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 39.09
name: accuracy
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-tom-cat-13b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 RTE
type: assin2
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 77.41
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-tom-cat-13b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 STS
type: eduagarcia/portuguese_benchmark
split: test
args:
num_few_shot: 15
metrics:
- type: pearson
value: 58.44
name: pearson
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-tom-cat-13b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: FaQuAD NLI
type: ruanchaves/faquad-nli
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 68.14
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-tom-cat-13b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HateBR Binary
type: ruanchaves/hatebr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 84.13
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-tom-cat-13b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: PT Hate Speech Binary
type: hate_speech_portuguese
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 56.27
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-tom-cat-13b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: tweetSentBR
type: eduagarcia/tweetsentbr_fewshot
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 48.86
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-tom-cat-13b
name: Open Portuguese LLM Leaderboard
portuguese-tom-cat-13b
This model was trained with a superset of 300,000 instructions in Portuguese. The model comes to help fill the gap in models in Portuguese. Tuned from the Llama-2-13b
How to use
FULL MODEL : A100
HALF MODEL: L4
8bit or 4bit : T4 or V100
You can use the model in its normal form up to 4-bit quantization. Below we will use both approaches. Remember that verbs are important in your prompt. Tell your model how to act or behave so that you can guide them along the path of their response. Important points like these help models to perform much better.
!pip install -q -U transformers
!pip install -q -U accelerate
!pip install -q -U bitsandbytes
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
model = AutoModelForCausalLM.from_pretrained("rhaymison/portuguese-tom-cat-13b", device_map= {"": 0})
tokenizer = AutoTokenizer.from_pretrained("rhaymison/portuguese-tom-cat-13b")
model.eval()
You can use with Pipeline.
from transformers import pipeline
pipe = pipeline("text-generation",
model=model,
tokenizer=tokenizer,
do_sample=True,
max_new_tokens=512,
num_beams=2,
temperature=0.3,
top_k=50,
top_p=0.95,
early_stopping=True,
pad_token_id=tokenizer.eos_token_id,
)
def format_question(input:str)-> str:
base_instruction = """Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido."""
_input = f"""<s>[INST] <<SYS>>\n {base_instruction}
<</SYS>> {input} [/INST]
"""
return _input.strip()
prompt = "Me explique sobre os romanos"
pipe(format_question(prompt))
Os romanos foram um povo que viveu na Itália antiga, entre o século VIII a.C. e o século V d.C.
Eles eram conhecidos por sua habilidade em construir estradas, edifícios e aquedutos, e também por suas conquistas militares.
O Império Romano, que durou de 27 a.C. a 476 d.C., foi o maior império da história, abrangendo uma área que ia da Grécia até a Inglaterra.
Os romanos também desenvolveram um sistema de leis e instituições políticas que influenciaram profundamente a cultura ocidental.
If you are having a memory problem such as "CUDA Out of memory", you should use 4-bit or 8-bit quantization. For the complete model in colab you will need the A100. If you want to use 4bits or 8bits, T4 or L4 will already solve the problem.
4bits example
from transformers import BitsAndBytesConfig
import torch
nb_4bit_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True
)
model = AutoModelForCausalLM.from_pretrained(
base_model,
quantization_config=bnb_config,
device_map={"": 0}
)
Open Portuguese LLM Leaderboard Evaluation Results
Detailed results can be found here and on the 🚀 Open Portuguese LLM Leaderboard
Metric | Value |
---|---|
Average | 57.86 |
ENEM Challenge (No Images) | 42.76 |
BLUEX (No Images) | 45.62 |
OAB Exams | 39.09 |
Assin2 RTE | 77.41 |
Assin2 STS | 58.44 |
FaQuAD NLI | 68.14 |
HateBR Binary | 84.13 |
PT Hate Speech Binary | 56.27 |
tweetSentBR | 48.86 |
Comments
Any idea, help or report will always be welcome.
email: [email protected]