rhaymison's picture
Update README.md
ce6fb78 verified
metadata
language:
  - pt
license: apache-2.0
library_name: transformers
tags:
  - portugues
  - portuguese
  - QA
  - instruct
  - phi
base_model: meta-llama/Llama-2-13b
datasets:
  - rhaymison/superset
pipeline_tag: text-generation
model-index:
  - name: portuguese-tom-cat-13b
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: ENEM Challenge (No Images)
          type: eduagarcia/enem_challenge
          split: train
          args:
            num_few_shot: 3
        metrics:
          - type: acc
            value: 42.76
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-tom-cat-13b
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BLUEX (No Images)
          type: eduagarcia-temp/BLUEX_without_images
          split: train
          args:
            num_few_shot: 3
        metrics:
          - type: acc
            value: 45.62
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-tom-cat-13b
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: OAB Exams
          type: eduagarcia/oab_exams
          split: train
          args:
            num_few_shot: 3
        metrics:
          - type: acc
            value: 39.09
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-tom-cat-13b
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Assin2 RTE
          type: assin2
          split: test
          args:
            num_few_shot: 15
        metrics:
          - type: f1_macro
            value: 77.41
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-tom-cat-13b
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Assin2 STS
          type: eduagarcia/portuguese_benchmark
          split: test
          args:
            num_few_shot: 15
        metrics:
          - type: pearson
            value: 58.44
            name: pearson
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-tom-cat-13b
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: FaQuAD NLI
          type: ruanchaves/faquad-nli
          split: test
          args:
            num_few_shot: 15
        metrics:
          - type: f1_macro
            value: 68.14
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-tom-cat-13b
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HateBR Binary
          type: ruanchaves/hatebr
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: f1_macro
            value: 84.13
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-tom-cat-13b
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: PT Hate Speech Binary
          type: hate_speech_portuguese
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: f1_macro
            value: 56.27
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-tom-cat-13b
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: tweetSentBR
          type: eduagarcia/tweetsentbr_fewshot
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: f1_macro
            value: 48.86
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-tom-cat-13b
          name: Open Portuguese LLM Leaderboard

portuguese-tom-cat-13b

This model was trained with a superset of 300,000 instructions in Portuguese. The model comes to help fill the gap in models in Portuguese. Tuned from the Llama-2-13b

How to use

FULL MODEL : A100

HALF MODEL: L4

8bit or 4bit : T4 or V100

You can use the model in its normal form up to 4-bit quantization. Below we will use both approaches. Remember that verbs are important in your prompt. Tell your model how to act or behave so that you can guide them along the path of their response. Important points like these help models to perform much better.

!pip install -q -U transformers
!pip install -q -U accelerate
!pip install -q -U bitsandbytes

from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
model = AutoModelForCausalLM.from_pretrained("rhaymison/portuguese-tom-cat-13b", device_map= {"": 0})
tokenizer = AutoTokenizer.from_pretrained("rhaymison/portuguese-tom-cat-13b")
model.eval()

You can use with Pipeline.


from transformers import pipeline
pipe = pipeline("text-generation",
                model=model,
                tokenizer=tokenizer,
                do_sample=True,
                max_new_tokens=512,
                num_beams=2,
                temperature=0.3,
                top_k=50,
                top_p=0.95,
                early_stopping=True,
                pad_token_id=tokenizer.eos_token_id,
                )


def format_question(input:str)-> str:
  base_instruction = """Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido."""
  _input = f"""<s>[INST] <<SYS>>\n {base_instruction}
  <</SYS>> {input}  [/INST]
  """

  return _input.strip()

prompt = "Me explique sobre os romanos"
pipe(format_question(prompt))
Os romanos foram um povo que viveu na Itália antiga, entre o século VIII a.C. e o século V d.C.
Eles eram conhecidos por sua habilidade em construir estradas, edifícios e aquedutos, e também por suas conquistas militares.
O Império Romano, que durou de 27 a.C. a 476 d.C., foi o maior império da história, abrangendo uma área que ia da Grécia até a Inglaterra.
Os romanos também desenvolveram um sistema de leis e instituições políticas que influenciaram profundamente a cultura ocidental.

If you are having a memory problem such as "CUDA Out of memory", you should use 4-bit or 8-bit quantization. For the complete model in colab you will need the A100. If you want to use 4bits or 8bits, T4 or L4 will already solve the problem.

4bits example

from transformers import BitsAndBytesConfig
import torch
nb_4bit_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=True
)

model = AutoModelForCausalLM.from_pretrained(
    base_model,
    quantization_config=bnb_config,
    device_map={"": 0}
)

Open Portuguese LLM Leaderboard Evaluation Results

Detailed results can be found here and on the 🚀 Open Portuguese LLM Leaderboard

Metric Value
Average 57.86
ENEM Challenge (No Images) 42.76
BLUEX (No Images) 45.62
OAB Exams 39.09
Assin2 RTE 77.41
Assin2 STS 58.44
FaQuAD NLI 68.14
HateBR Binary 84.13
PT Hate Speech Binary 56.27
tweetSentBR 48.86

Comments

Any idea, help or report will always be welcome.

email: [email protected]