Model Card of lmqg/mbart-large-cc25-frquad-qg
This model is fine-tuned version of facebook/mbart-large-cc25 for question generation task on the lmqg/qg_frquad (dataset_name: default) via lmqg
.
Overview
- Language model: facebook/mbart-large-cc25
- Language: fr
- Training data: lmqg/qg_frquad (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: https://arxiv.org/abs/2210.03992
Usage
- With
lmqg
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="fr", model="lmqg/mbart-large-cc25-frquad-qg")
# model prediction
questions = model.generate_q(list_context="Créateur » (Maker), lui aussi au singulier, « le Suprême Berger » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.", list_answer="le Suprême Berger")
- With
transformers
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mbart-large-cc25-frquad-qg")
output = pipe("Créateur » (Maker), lui aussi au singulier, « <hl> le Suprême Berger <hl> » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.")
Evaluation
- Metric (Question Generation): raw metric file
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 81.75 | default | lmqg/qg_frquad |
Bleu_1 | 30.64 | default | lmqg/qg_frquad |
Bleu_2 | 19.09 | default | lmqg/qg_frquad |
Bleu_3 | 13.26 | default | lmqg/qg_frquad |
Bleu_4 | 9.47 | default | lmqg/qg_frquad |
METEOR | 19.8 | default | lmqg/qg_frquad |
MoverScore | 57.96 | default | lmqg/qg_frquad |
ROUGE_L | 30.62 | default | lmqg/qg_frquad |
- Metric (Question & Answer Generation, Reference Answer): Each question is generated from the gold answer. raw metric file
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 81.27 | default | lmqg/qg_frquad |
QAAlignedF1Score (MoverScore) | 55.61 | default | lmqg/qg_frquad |
QAAlignedPrecision (BERTScore) | 81.29 | default | lmqg/qg_frquad |
QAAlignedPrecision (MoverScore) | 55.61 | default | lmqg/qg_frquad |
QAAlignedRecall (BERTScore) | 81.25 | default | lmqg/qg_frquad |
QAAlignedRecall (MoverScore) | 55.6 | default | lmqg/qg_frquad |
- Metric (Question & Answer Generation, Pipeline Approach): Each question is generated on the answer generated by
lmqg/mbart-large-cc25-frquad-ae
. raw metric file
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 75.55 | default | lmqg/qg_frquad |
QAAlignedF1Score (MoverScore) | 51.75 | default | lmqg/qg_frquad |
QAAlignedPrecision (BERTScore) | 74.04 | default | lmqg/qg_frquad |
QAAlignedPrecision (MoverScore) | 51.03 | default | lmqg/qg_frquad |
QAAlignedRecall (BERTScore) | 77.16 | default | lmqg/qg_frquad |
QAAlignedRecall (MoverScore) | 52.52 | default | lmqg/qg_frquad |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_frquad
- dataset_name: default
- input_types: ['paragraph_answer']
- output_types: ['question']
- prefix_types: None
- model: facebook/mbart-large-cc25
- max_length: 512
- max_length_output: 32
- epoch: 8
- batch: 4
- lr: 0.001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 16
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
- Downloads last month
- 24
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Evaluation results
- BLEU4 (Question Generation) on lmqg/qg_frquadself-reported9.470
- ROUGE-L (Question Generation) on lmqg/qg_frquadself-reported30.620
- METEOR (Question Generation) on lmqg/qg_frquadself-reported19.800
- BERTScore (Question Generation) on lmqg/qg_frquadself-reported81.750
- MoverScore (Question Generation) on lmqg/qg_frquadself-reported57.960
- QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_frquadself-reported81.270
- QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_frquadself-reported81.250
- QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_frquadself-reported81.290
- QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_frquadself-reported55.610
- QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_frquadself-reported55.600