wavlm-basic_s-f-c_8batch_5sec_0.0001lr_unfrozen

This model is a fine-tuned version of microsoft/wavlm-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8095
  • Accuracy: 0.85
  • F1: 0.8383

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.003
  • num_epochs: 1000

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
2.2489 0.99 47 2.3092 0.1 0.0182
1.8953 2.0 95 2.1986 0.2 0.0807
1.6269 2.99 142 2.0505 0.2667 0.1554
1.4844 4.0 190 1.7348 0.4333 0.3482
1.2047 4.99 237 1.3970 0.5833 0.4907
1.005 6.0 285 1.3947 0.6 0.4957
0.8541 6.99 332 1.0432 0.65 0.5830
0.7027 8.0 380 1.0033 0.7333 0.6992
0.72 8.99 427 0.9982 0.7833 0.7657
0.5461 10.0 475 1.1170 0.6833 0.6571
0.4415 10.99 522 0.9240 0.75 0.7402
0.4022 12.0 570 0.9522 0.7667 0.7488
0.3664 12.99 617 0.8290 0.8333 0.8253
0.3592 14.0 665 1.0270 0.75 0.7313
0.2985 14.99 712 1.0835 0.7667 0.7591
0.2565 16.0 760 0.9175 0.8167 0.8090
0.2887 16.99 807 0.8095 0.85 0.8383
0.3038 18.0 855 0.8871 0.7833 0.7763
0.242 18.99 902 0.8786 0.8 0.7875
0.1994 20.0 950 1.0309 0.7833 0.7656
0.1569 20.99 997 1.0706 0.8 0.7886
0.1637 22.0 1045 0.9650 0.8333 0.8249

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
1
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.