use-relative-imports
#13
by
recursionaut
- opened
- README.md +4 -5
- __init__.py +0 -0
- generate_reconstructions.ipynb +0 -0
- huggingface_mae.py +7 -6
- mae_modules.py +2 -2
- test_huggingface_mae.py +5 -6
README.md
CHANGED
@@ -67,15 +67,14 @@ import torch
|
|
67 |
|
68 |
from huggingface_mae import MAEModel
|
69 |
|
70 |
-
huggingface_openphenom_model_dir = "."
|
71 |
-
|
72 |
|
73 |
|
74 |
@pytest.fixture
|
75 |
def huggingface_model():
|
76 |
-
#
|
77 |
-
|
78 |
-
huggingface_model = MAEModel.from_pretrained(huggingface_openphenom_model_dir)
|
79 |
huggingface_model.eval()
|
80 |
return huggingface_model
|
81 |
|
|
|
67 |
|
68 |
from huggingface_mae import MAEModel
|
69 |
|
70 |
+
# huggingface_openphenom_model_dir = "."
|
71 |
+
huggingface_modelpath = "recursionpharma/OpenPhenom"
|
72 |
|
73 |
|
74 |
@pytest.fixture
|
75 |
def huggingface_model():
|
76 |
+
# This step downloads the model to a local cache, takes a bit to run
|
77 |
+
huggingface_model = MAEModel.from_pretrained(huggingface_modelpath)
|
|
|
78 |
huggingface_model.eval()
|
79 |
return huggingface_model
|
80 |
|
__init__.py
ADDED
File without changes
|
generate_reconstructions.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
huggingface_mae.py
CHANGED
@@ -4,12 +4,13 @@ import torch
|
|
4 |
import torch.nn as nn
|
5 |
|
6 |
from transformers import PretrainedConfig, PreTrainedModel
|
|
|
7 |
|
8 |
-
from loss import FourierLoss
|
9 |
-
from normalizer import Normalizer
|
10 |
-
from mae_modules import CAMAEDecoder, MAEDecoder, MAEEncoder
|
11 |
-
from mae_utils import flatten_images
|
12 |
-
from vit import (
|
13 |
generate_2d_sincos_pos_embeddings,
|
14 |
sincos_positional_encoding_vit,
|
15 |
vit_small_patch16_256,
|
@@ -285,8 +286,8 @@ class MAEModel(PreTrainedModel):
|
|
285 |
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
286 |
filename = kwargs.pop("filename", "model.safetensors")
|
287 |
|
288 |
-
modelpath = f"{pretrained_model_name_or_path}/{filename}"
|
289 |
config = MAEConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
|
|
290 |
state_dict = torch.load(modelpath, map_location="cpu")
|
291 |
model = cls(config)
|
292 |
model.load_state_dict(state_dict["state_dict"])
|
|
|
4 |
import torch.nn as nn
|
5 |
|
6 |
from transformers import PretrainedConfig, PreTrainedModel
|
7 |
+
from transformers.utils import cached_file
|
8 |
|
9 |
+
from .loss import FourierLoss
|
10 |
+
from .normalizer import Normalizer
|
11 |
+
from .mae_modules import CAMAEDecoder, MAEDecoder, MAEEncoder
|
12 |
+
from .mae_utils import flatten_images
|
13 |
+
from .vit import (
|
14 |
generate_2d_sincos_pos_embeddings,
|
15 |
sincos_positional_encoding_vit,
|
16 |
vit_small_patch16_256,
|
|
|
286 |
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
287 |
filename = kwargs.pop("filename", "model.safetensors")
|
288 |
|
|
|
289 |
config = MAEConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
290 |
+
modelpath = cached_file(pretrained_model_name_or_path, filename=filename)
|
291 |
state_dict = torch.load(modelpath, map_location="cpu")
|
292 |
model = cls(config)
|
293 |
model.load_state_dict(state_dict["state_dict"])
|
mae_modules.py
CHANGED
@@ -7,8 +7,8 @@ import torch.nn as nn
|
|
7 |
from timm.models.helpers import checkpoint_seq
|
8 |
from timm.models.vision_transformer import Block, Mlp, VisionTransformer
|
9 |
|
10 |
-
from masking import transformer_random_masking
|
11 |
-
from vit import channel_agnostic_vit
|
12 |
|
13 |
# If interested in training new MAEs, combine an encoder and decoder into a new module, and you should
|
14 |
# leverage the flattening and unflattening utilities as needed from mae_utils.py.
|
|
|
7 |
from timm.models.helpers import checkpoint_seq
|
8 |
from timm.models.vision_transformer import Block, Mlp, VisionTransformer
|
9 |
|
10 |
+
from .masking import transformer_random_masking
|
11 |
+
from .vit import channel_agnostic_vit
|
12 |
|
13 |
# If interested in training new MAEs, combine an encoder and decoder into a new module, and you should
|
14 |
# leverage the flattening and unflattening utilities as needed from mae_utils.py.
|
test_huggingface_mae.py
CHANGED
@@ -1,17 +1,16 @@
|
|
1 |
import pytest
|
2 |
import torch
|
3 |
|
4 |
-
|
|
|
5 |
|
6 |
-
|
7 |
-
# huggingface_modelpath = "recursionpharma/test-pb-model"
|
8 |
|
9 |
|
10 |
@pytest.fixture
|
11 |
def huggingface_model():
|
12 |
-
#
|
13 |
-
|
14 |
-
huggingface_model = MAEModel.from_pretrained(huggingface_openphenom_model_dir)
|
15 |
huggingface_model.eval()
|
16 |
return huggingface_model
|
17 |
|
|
|
1 |
import pytest
|
2 |
import torch
|
3 |
|
4 |
+
# huggingface_openphenom_model_dir = "."
|
5 |
+
huggingface_modelpath = "recursionpharma/OpenPhenom"
|
6 |
|
7 |
+
from .huggingface_mae import MAEModel
|
|
|
8 |
|
9 |
|
10 |
@pytest.fixture
|
11 |
def huggingface_model():
|
12 |
+
# This step downloads the model to a local cache, takes a bit to run
|
13 |
+
huggingface_model = MAEModel.from_pretrained(huggingface_modelpath)
|
|
|
14 |
huggingface_model.eval()
|
15 |
return huggingface_model
|
16 |
|