|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch RWKV6Moe World model.""" |
|
|
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
from pathlib import Path |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
|
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ( |
|
ModelOutput, |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
is_ninja_available, |
|
is_torch_cuda_available, |
|
logging, |
|
) |
|
|
|
from .configuration_rwkv6_moe import Rwkv6MoeConfig |
|
try: |
|
from fla.ops.rwkv6 import fused_recurrent_rwkv6 |
|
except ImportError: |
|
print("Required module is not installed. Please install it using the following commands:") |
|
print("pip install -U git+https://github.com/sustcsonglin/flash-linear-attention") |
|
print("Additionally, ensure you have the correct version of Triton installed:") |
|
print("pip install triton==2.2.0") |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "RWKV/rwkv-6-moe-11a41b" |
|
_CONFIG_FOR_DOC = "Rwkv6MoeConfig" |
|
|
|
def rwkv6_moe_linear_attention_cpu(receptance, key, value, time_decay, time_first, state): |
|
|
|
|
|
batch, seq_length, _ = receptance.shape |
|
num_heads, head_size = time_first.shape |
|
key = key.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2).transpose(-2, -1) |
|
value = value.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2) |
|
receptance = receptance.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2) |
|
time_decay = torch.exp(-torch.exp(time_decay.float())).view(batch, seq_length, num_heads, head_size).permute(0, 2, 3, 1) |
|
time_first = time_first.float().reshape(-1, 1, 1).reshape(num_heads, -1, 1) |
|
out = torch.zeros_like(key).reshape(batch, seq_length, num_heads, head_size) |
|
|
|
for current_index in range(seq_length): |
|
current_receptance = receptance[:, :, current_index:current_index+1, :] |
|
current_key = key[:, :, :, current_index:current_index+1] |
|
current_value = value[:, :, current_index:current_index+1, :] |
|
current_time_decay = time_decay[:, :, :, current_index:current_index+1] |
|
attention_output = current_key @ current_value |
|
out[:, current_index] = (current_receptance @ (time_first * attention_output + state)).squeeze(2) |
|
with torch.no_grad(): |
|
state = attention_output + current_time_decay * state |
|
|
|
return out, state |
|
|
|
def rwkv6_moe_linear_attention( |
|
training, |
|
receptance, |
|
key, |
|
value, |
|
time_decay, |
|
time_first, |
|
state, |
|
): |
|
no_cuda = any(t.device.type != "cuda" for t in [time_decay, time_first, receptance, key, value]) |
|
|
|
|
|
one_token = key.size(1) == 1 |
|
if not training or no_cuda or one_token: |
|
return rwkv6_moe_linear_attention_cpu( |
|
receptance, key, value, time_decay, time_first, state |
|
) |
|
else: |
|
batch, seq_length, _ = receptance.shape |
|
num_heads, head_size = time_first.shape |
|
key = key.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2) |
|
value = value.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2) |
|
receptance = receptance.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2) |
|
time_decay = -torch.exp(time_decay.float()).view(batch, seq_length, num_heads, head_size).permute(0, 2, 1, 3) |
|
time_first = time_first.float().reshape(num_heads, head_size) |
|
out, state = fused_recurrent_rwkv6(receptance, key, value, time_decay, time_first, scale=1.0, initial_state=state, output_final_state=True) |
|
return out.transpose(1, 2), state |
|
|
|
|
|
class Rwkv6MoeSelfAttention(nn.Module): |
|
def __init__(self, config, layer_id=0): |
|
super().__init__() |
|
self.config = config |
|
self.layer_id = layer_id |
|
hidden_size = config.hidden_size |
|
attention_hidden_size = config.attention_hidden_size |
|
self.attention_hidden_size = attention_hidden_size |
|
head_size = config.head_size |
|
num_heads = attention_hidden_size // head_size |
|
|
|
self.time_maa_x = nn.Parameter(torch.empty(1, 1, hidden_size)) |
|
self.time_maa_w = nn.Parameter(torch.empty(1, 1, hidden_size)) |
|
self.time_maa_k = nn.Parameter(torch.empty(1, 1, hidden_size)) |
|
self.time_maa_v = nn.Parameter(torch.empty(1, 1, hidden_size)) |
|
self.time_maa_r = nn.Parameter(torch.empty(1, 1, hidden_size)) |
|
self.time_maa_g = nn.Parameter(torch.empty(1, 1, hidden_size)) |
|
|
|
TIME_MIX_EXTRA_DIM = 32 |
|
if hidden_size == 4096: |
|
TIME_MIX_EXTRA_DIM = 64 |
|
self.time_maa_w1 = nn.Parameter(torch.empty(hidden_size, TIME_MIX_EXTRA_DIM*5)) |
|
self.time_maa_w2 = nn.Parameter(torch.empty(5, TIME_MIX_EXTRA_DIM, hidden_size)) |
|
|
|
self.time_decay = nn.Parameter(torch.empty(1, 1, attention_hidden_size)) |
|
|
|
TIME_DECAY_EXTRA_DIM = 64 |
|
if hidden_size == 4096: |
|
TIME_DECAY_EXTRA_DIM = 128 |
|
self.time_decay_w1 = nn.Parameter(torch.empty(hidden_size, TIME_DECAY_EXTRA_DIM)) |
|
self.time_decay_w2 = nn.Parameter(torch.empty(TIME_DECAY_EXTRA_DIM, attention_hidden_size)) |
|
|
|
self.time_faaaa = nn.Parameter(torch.empty(num_heads, config.head_size)) |
|
|
|
|
|
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1)) |
|
self.receptance = nn.Linear(hidden_size, attention_hidden_size, bias=False) |
|
self.key = nn.Linear(hidden_size, attention_hidden_size, bias=False) |
|
self.value = nn.Linear(hidden_size, attention_hidden_size, bias=False) |
|
self.gate = nn.Linear(hidden_size, attention_hidden_size, bias=False) |
|
self.output = nn.Linear(attention_hidden_size, hidden_size, bias=False) |
|
self.ln_x = nn.GroupNorm(num_heads, hidden_size, eps=(1e-5)*(config.head_size_divisor**2)) |
|
|
|
def extract_key_value(self, hidden, state=None): |
|
|
|
if hidden.size(1) == 1 and state is not None: |
|
shifted = state[0][:, :, self.layer_id] |
|
else: |
|
shifted = self.time_shift(hidden) |
|
if state is not None: |
|
shifted[:, 0] = state[0][:, :, self.layer_id] |
|
if len(shifted.size()) == 2: |
|
shifted = shifted.unsqueeze(1) |
|
|
|
x = hidden |
|
|
|
B, T, C = hidden.shape |
|
|
|
xx = shifted - x |
|
|
|
xxx = x + xx * self.time_maa_x |
|
xxx = torch.tanh(xxx @ self.time_maa_w1).view(B*T, 5, -1).transpose(0, 1) |
|
xxx = torch.bmm(xxx, self.time_maa_w2).view(5, B, T, -1) |
|
mw, mk, mv, mr, mg = xxx.unbind(dim=0) |
|
|
|
time_decay = x + xx * (self.time_maa_w + mw) |
|
key = x + xx * (self.time_maa_k + mk) |
|
value = x + xx * (self.time_maa_v + mv) |
|
receptance = x + xx * (self.time_maa_r + mr) |
|
gate = x + xx * (self.time_maa_g + mg) |
|
|
|
receptance = self.receptance(receptance) |
|
key = self.key(key) |
|
value = self.value(value) |
|
gate = F.silu(self.gate(gate)) |
|
|
|
time_decay = torch.tanh(time_decay @ self.time_decay_w1) @ self.time_decay_w2 |
|
time_decay = self.time_decay + time_decay |
|
|
|
if state is not None: |
|
state[0][:, :, self.layer_id] = hidden[:, -1] |
|
|
|
return receptance, key, value, gate, time_decay, state |
|
|
|
def forward(self, hidden, state=None, use_cache=False, seq_mode=True): |
|
receptance, key, value, gate, time_decay, state = self.extract_key_value(hidden, state=state) |
|
|
|
B,T,C = receptance.shape |
|
H, S = self.time_faaaa.shape |
|
|
|
layer_state = state[1][:, :, :, :, self.layer_id] if state is not None else None |
|
out, layer_state = rwkv6_moe_linear_attention( |
|
self.training, receptance, key, value, time_decay, self.time_faaaa, layer_state, |
|
) |
|
|
|
if layer_state is not None: |
|
state[1][:, :, :, :, self.layer_id] = layer_state |
|
|
|
out = out.reshape(B * T, H * S) |
|
out = F.group_norm(out, num_groups=H, weight=self.ln_x.weight.to(out.dtype), bias=self.ln_x.bias.to(out.dtype), eps=self.ln_x.eps).reshape(B, T, H * S) |
|
out = out.to(dtype=hidden.dtype) * gate |
|
out = self.output(out) |
|
return out, state |
|
|
|
class Rwkv6MoeFeedForwardExpert(nn.Module): |
|
def __init__(self, config, layer_id=0): |
|
super().__init__() |
|
hidden_size = config.hidden_size |
|
|
|
intermediate_size = ( |
|
config.intermediate_size |
|
if config.intermediate_size is not None |
|
else int((config.hidden_size * 3.5) // 32 * 32) |
|
) |
|
|
|
self.key = nn.Linear(hidden_size, intermediate_size, bias=False) |
|
self.value = nn.Linear(intermediate_size, hidden_size, bias=False) |
|
|
|
def forward(self, hidden, state=None): |
|
return self.value( torch.relu( self.key(hidden) ).square() ) |
|
|
|
class Rwkv6MoeFeedForward(nn.Module): |
|
def __init__(self, config, layer_id=0): |
|
super().__init__() |
|
self.config = config |
|
self.layer_id = layer_id |
|
hidden_size = config.hidden_size |
|
|
|
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1)) |
|
self.time_maa_k = nn.Parameter(torch.empty(1, 1, hidden_size)) |
|
self.time_maa_r = nn.Parameter(torch.empty(1, 1, hidden_size)) |
|
|
|
self.receptance = nn.Linear(hidden_size, hidden_size, bias=False) |
|
self.shared_expert = Rwkv6MoeFeedForwardExpert(config, layer_id) if config.shared_expert else None |
|
self.experts = nn.ModuleList([Rwkv6MoeFeedForwardExpert(config, layer_id) for _ in range(config.num_experts)]) |
|
|
|
primes = [5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443] |
|
self.hash_prime = primes[layer_id] |
|
|
|
def forward(self, hidden, input_ids:torch.LongTensor, state=None): |
|
if hidden.size(1) == 1 and state is not None: |
|
shifted = state[2][:, :, self.layer_id] |
|
else: |
|
shifted = self.time_shift(hidden) |
|
if state is not None: |
|
shifted[:, 0] = state[2][:, :, self.layer_id] |
|
if len(shifted.size()) == 2: |
|
shifted = shifted.unsqueeze(1) |
|
|
|
delta_hidden_to_shifted = shifted - hidden |
|
hidden_with_tokenshift = hidden + delta_hidden_to_shifted * self.time_maa_k |
|
receptance = hidden + delta_hidden_to_shifted * self.time_maa_r |
|
|
|
receptance = torch.sigmoid(self.receptance(receptance)) |
|
|
|
|
|
flat_input_ids = input_ids.flatten() |
|
flat_hidden_with_tokenshift = hidden_with_tokenshift.reshape(-1, hidden_with_tokenshift.size(-1)) |
|
|
|
if self.shared_expert is not None: |
|
flat_value = self.shared_expert(flat_hidden_with_tokenshift) |
|
else: |
|
flat_value = torch.zeros_like(flat_hidden_with_tokenshift) |
|
|
|
|
|
|
|
|
|
expert_by_flat_idx = (flat_input_ids * self.hash_prime) % self.config.num_experts |
|
|
|
expert_mask = torch.nn.functional.one_hot(expert_by_flat_idx, num_classes=self.config.num_experts).mT |
|
|
|
for expert_idx in range(self.config.num_experts): |
|
expert = self.experts[expert_idx] |
|
|
|
flat_indices_for_expert = expert_mask[expert_idx].nonzero().flatten() |
|
if flat_indices_for_expert.size(-1) > 0: |
|
|
|
expert_hidden_with_tokenshift = flat_hidden_with_tokenshift[flat_indices_for_expert] |
|
|
|
compact_expert_output = expert(expert_hidden_with_tokenshift) |
|
|
|
flat_value.index_add_(dim=0, index=flat_indices_for_expert, source=compact_expert_output) |
|
|
|
value = flat_value.view(hidden.size(0), hidden.size(1), hidden.size(2)) |
|
|
|
if state is not None: |
|
state[2][:, :, self.layer_id] = hidden[:, -1] |
|
|
|
return receptance * value, state |
|
|
|
|
|
class Rwkv6MoeBlock(nn.Module): |
|
def __init__(self, config, layer_id): |
|
super().__init__() |
|
self.config = config |
|
self.layer_id = layer_id |
|
|
|
if layer_id == 0: |
|
self.pre_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) |
|
|
|
self.ln1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) |
|
self.ln2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) |
|
|
|
self.attention = Rwkv6MoeSelfAttention(config, layer_id) |
|
self.feed_forward = Rwkv6MoeFeedForward(config, layer_id) |
|
|
|
def forward(self, hidden, input_ids:torch.LongTensor, state=None, use_cache=False, output_attentions=False, seq_mode=True): |
|
if self.layer_id == 0: |
|
hidden = self.pre_ln(hidden) |
|
attention, state = self.attention(self.ln1(hidden), state=state, use_cache=use_cache, seq_mode=seq_mode) |
|
hidden = hidden + attention |
|
|
|
feed_forward, state = self.feed_forward(self.ln2(hidden), input_ids=input_ids, state=state) |
|
hidden = hidden + feed_forward |
|
|
|
outputs = (hidden, state) |
|
if output_attentions: |
|
outputs += (attention,) |
|
else: |
|
outputs += (None,) |
|
|
|
return outputs |
|
|
|
|
|
class Rwkv6MoePreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = Rwkv6MoeConfig |
|
base_model_prefix = "rwkv6moe" |
|
_no_split_modules = ["Rwkv6MoeBlock"] |
|
_keep_in_fp32_modules = ["time_decay", "time_first"] |
|
supports_gradient_checkpointing = True |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights.""" |
|
if isinstance(module, Rwkv6MoeSelfAttention): |
|
layer_id = module.layer_id |
|
num_hidden_layers = module.config.num_hidden_layers |
|
hidden_size = module.config.hidden_size |
|
attention_hidden_size = module.attention_hidden_size |
|
head_size = module.config.head_size |
|
num_heads = attention_hidden_size // head_size |
|
|
|
ratio_0_to_1 = layer_id / (num_hidden_layers - 1) |
|
ratio_1_to_almost0 = 1.0 - (layer_id / num_hidden_layers) |
|
|
|
time_weight = torch.tensor( |
|
[i / hidden_size for i in range(hidden_size)], |
|
dtype=module.time_maa_k.dtype, |
|
device=module.time_maa_k.device, |
|
) |
|
time_weight = time_weight[None, None, :] |
|
|
|
decay_speed = [ |
|
-6.0 + 5.0 * (h / (attention_hidden_size - 1)) ** (0.7 + 1.3 * ratio_0_to_1) |
|
for h in range(attention_hidden_size) |
|
] |
|
decay_speed = torch.tensor(decay_speed, dtype=module.time_decay.dtype, device=module.time_decay.device) |
|
tmp = torch.tensor( |
|
[ |
|
(1.0 - (i / (attention_hidden_size - 1.0))) * ratio_0_to_1 + 0.1 * ((i + 1) % 3 - 1) |
|
for i in range(attention_hidden_size) |
|
], |
|
dtype=module.time_faaaa.dtype, |
|
device=module.time_faaaa.device, |
|
) |
|
|
|
with torch.no_grad(): |
|
module.time_maa_x.data = 1.0 - torch.pow(time_weight, ratio_1_to_almost0) |
|
module.time_maa_w.data = 1.0 - torch.pow(time_weight, ratio_1_to_almost0) |
|
module.time_maa_k.data = 1.0 - torch.pow(time_weight, ratio_1_to_almost0) |
|
module.time_maa_v.data = 1.0 - (torch.pow(time_weight, ratio_1_to_almost0) + 0.3 * ratio_0_to_1) |
|
module.time_maa_r.data = 1.0 - torch.pow(time_weight, 0.5 * ratio_1_to_almost0) |
|
module.time_maa_g.data = 1.0 - torch.pow(time_weight, 0.5 * ratio_1_to_almost0) |
|
|
|
TIME_MIX_EXTRA_DIM = 32 |
|
module.time_maa_w1.data = torch.zeros(hidden_size, TIME_MIX_EXTRA_DIM*5, dtype=module.time_maa_w1.dtype, device=module.time_maa_w1.device).uniform_(-1e-4, 1e-4) |
|
module.time_maa_w2.data = torch.zeros(5, TIME_MIX_EXTRA_DIM, hidden_size, dtype=module.time_maa_w2.dtype, device=module.time_maa_w2.device).uniform_(-1e-4, 1e-4) |
|
|
|
TIME_DECAY_EXTRA_DIM = 64 |
|
module.time_decay_w1.data = torch.zeros(hidden_size, TIME_DECAY_EXTRA_DIM, dtype=module.time_decay_w1.dtype, device=module.time_decay_w1.device).uniform_(-1e-4, 1e-4) |
|
module.time_decay_w2.data = torch.zeros(TIME_DECAY_EXTRA_DIM, attention_hidden_size, dtype=module.time_decay_w2.dtype, device=module.time_decay_w2.device).uniform_(-1e-4, 1e-4) |
|
|
|
module.time_decay.data = decay_speed.reshape(num_heads, head_size) |
|
module.time_faaaa.data = tmp.reshape(num_heads, head_size) |
|
|
|
elif isinstance(module, Rwkv6MoeFeedForward): |
|
layer_id = module.layer_id |
|
num_hidden_layers = module.config.num_hidden_layers |
|
hidden_size = module.config.hidden_size |
|
|
|
ratio_1_to_almost0 = 1.0 - (layer_id / num_hidden_layers) |
|
|
|
time_weight = torch.tensor( |
|
[i / hidden_size for i in range(hidden_size)], |
|
dtype=module.time_maa_k.dtype, |
|
device=module.time_maa_k.device, |
|
) |
|
time_weight = time_weight[None, None, :] |
|
|
|
with torch.no_grad(): |
|
module.time_maa_k.data = 1.0 - torch.pow(time_weight, ratio_1_to_almost0) |
|
module.time_maa_r.data = 1.0 - torch.pow(time_weight, ratio_1_to_almost0) |
|
|
|
|
|
@dataclass |
|
class Rwkv6MoeOutput(ModelOutput): |
|
""" |
|
Class for the RWKV model outputs. |
|
|
|
Args: |
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
state (list of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`): |
|
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to |
|
avoid providing the old `input_ids`. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of |
|
the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in |
|
the self-attention heads. |
|
""" |
|
|
|
last_hidden_state: torch.FloatTensor = None |
|
state: Optional[List[torch.FloatTensor]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
@dataclass |
|
class Rwkv6MoeCausalLMOutput(ModelOutput): |
|
""" |
|
Base class for causal language model (or autoregressive) outputs. |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Language modeling loss (for next-token prediction). |
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
state (list of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`): |
|
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to |
|
avoid providing the old `input_ids`. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of |
|
the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in |
|
the self-attention heads. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
state: Optional[List[torch.FloatTensor]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
RWKV6MOE_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) |
|
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to |
|
general usage and behavior. |
|
|
|
Parameters: |
|
config ([`Rwkv6MoeConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
RWKV6MOE_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): |
|
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else |
|
`past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input |
|
sequence tokens in the vocabulary. If `past_key_values` is used, only `input_ids` that do not have their |
|
past calculated should be passed as `input_ids`. Indices can be obtained using [`AutoTokenizer`]. See |
|
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input |
|
IDs?](../glossary#input-ids) |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
state (tuple of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`, *optional*): |
|
If passed along, the model uses the previous state in all the blocks (which will give the output for the |
|
`input_ids` provided as if the model add `state_input_ids + input_ids` as context). |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, the last state is returned and can be used to quickly generate the next logits. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare RWKV6Moe Model transformer outputting raw hidden-states without any specific head on top.", |
|
RWKV6MOE_START_DOCSTRING, |
|
) |
|
class Rwkv6MoeModel(Rwkv6MoePreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size) |
|
self.blocks = nn.ModuleList([Rwkv6MoeBlock(config, layer_id=idx) for idx in range(config.num_hidden_layers)]) |
|
self.ln_out = nn.LayerNorm(config.hidden_size) |
|
|
|
self.layers_are_rescaled = False |
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.embeddings = new_embeddings |
|
|
|
@add_start_docstrings_to_model_forward(RWKV6MOE_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=Rwkv6MoeOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
state: Optional[List[torch.FloatTensor]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, Rwkv6MoeOutput]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
|
|
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if self.training == self.layers_are_rescaled and ( |
|
self.embeddings.weight.dtype == torch.float16 or self.embeddings.weight.dtype == torch.bfloat16 |
|
): |
|
self._rescale_layers() |
|
|
|
if input_ids is None: |
|
raise ValueError("RWKV-MoE requires that you specify input_ids, as it uses these to select experts") |
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is None and inputs_embeds is None: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embeddings(input_ids) |
|
|
|
if state is None: |
|
state = [] |
|
head_size = self.config.head_size |
|
num_heads = self.config.attention_hidden_size // head_size |
|
state_attn_x = torch.zeros( |
|
(inputs_embeds.size(0), self.config.hidden_size, self.config.num_hidden_layers), |
|
dtype=inputs_embeds.dtype, |
|
requires_grad=False, |
|
device=inputs_embeds.device, |
|
).contiguous() |
|
state_attn_kv = torch.zeros( |
|
( |
|
inputs_embeds.size(0), |
|
num_heads, |
|
head_size, |
|
head_size, |
|
self.config.num_hidden_layers, |
|
), |
|
dtype=torch.float32, |
|
requires_grad=False, |
|
device=inputs_embeds.device, |
|
).contiguous() |
|
state_ffn_x = torch.zeros( |
|
(inputs_embeds.size(0), self.config.hidden_size, self.config.num_hidden_layers), |
|
dtype=inputs_embeds.dtype, |
|
requires_grad=False, |
|
device=inputs_embeds.device, |
|
).contiguous() |
|
state.append(state_attn_x) |
|
state.append(state_attn_kv) |
|
state.append(state_ffn_x) |
|
|
|
seq_mode = inputs_embeds.shape[1] > 1 |
|
hidden_states = inputs_embeds |
|
|
|
all_self_attentions = () if output_attentions else None |
|
all_hidden_states = () if output_hidden_states else None |
|
for idx, block in enumerate(self.blocks): |
|
hidden_states, state, attentions = block( |
|
hidden_states, input_ids=input_ids, state=state, use_cache=use_cache, output_attentions=output_attentions, seq_mode=seq_mode |
|
) |
|
if ( |
|
self.layers_are_rescaled |
|
and self.config.rescale_every > 0 |
|
and (idx + 1) % self.config.rescale_every == 0 |
|
): |
|
hidden_states = hidden_states / 2 |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (attentions,) |
|
|
|
hidden_states = self.ln_out(hidden_states) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return (hidden_states, state, all_hidden_states, all_self_attentions) |
|
|
|
return Rwkv6MoeOutput( |
|
last_hidden_state=hidden_states, |
|
state=state, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
|
|
def _rescale_layers(self): |
|
|
|
if self.layers_are_rescaled == (not self.training): |
|
return |
|
if self.config.rescale_every > 0: |
|
with torch.no_grad(): |
|
for block_id, block in enumerate(self.blocks): |
|
if self.training: |
|
block.attention.output.weight.mul_(2 ** int(block_id // self.config.rescale_every)) |
|
block.feed_forward.shared_expert.value.weight.mul_(2 ** int(block_id // self.config.rescale_every)) |
|
for expert in block.feed_forward.experts: |
|
expert.value.weight.mul_(2 ** int(block_id // self.config.rescale_every)) |
|
else: |
|
|
|
if hasattr(block.attention.output.weight, "SCB"): |
|
block.attention.output.weight.SCB.div_(2 ** int(block_id // self.config.rescale_every)) |
|
block.feed_forward.shared_expert.value.weight.SCB.div_(2 ** int(block_id // self.config.rescale_every)) |
|
for expert in block.feed_forward.experts: |
|
expert.value.weight.SCB.div_(2 ** int(block_id // self.config.rescale_every)) |
|
elif hasattr(block.attention.output.weight, "quant_state"): |
|
self._bnb_4bit_dequantize_and_rescale(block.attention.output, block_id) |
|
self._bnb_4bit_dequantize_and_rescale(block.feed_forward.shared_expert.value, block_id) |
|
for expert in block.feed_forward.experts: |
|
self._bnb_4bit_dequantize_and_rescale(expert.value, block_id) |
|
else: |
|
block.attention.output.weight.div_(2 ** int(block_id // self.config.rescale_every)) |
|
block.feed_forward.shared_expert.value.weight.div_(2 ** int(block_id // self.config.rescale_every)) |
|
for expert in block.feed_forward.experts: |
|
expert.value.weight.div_(2 ** int(block_id // self.config.rescale_every)) |
|
|
|
self.layers_are_rescaled = not self.training |
|
|
|
def _bnb_4bit_dequantize_and_rescale(self, target_layer, block_id): |
|
r""" |
|
Perform the dequantization and rescaling of the weights of a given layer. After that operation the layer will |
|
be quantized again. |
|
""" |
|
if not is_bitsandbytes_available(): |
|
raise ImportError("Please install bitsandbytes to use this method.") |
|
import bitsandbytes as bnb |
|
|
|
dequant_weights = bnb.functional.dequantize_4bit(target_layer.weight.data, target_layer.weight.quant_state) |
|
|
|
dequant_weights.div_(2 ** int(block_id // self.config.rescale_every)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
quant_weight = bnb.nn.Params4bit(dequant_weights.to("cpu"), requires_grad=False).to(dequant_weights.device) |
|
setattr(target_layer, "weight", quant_weight) |
|
|
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The RWKV6Moe Model transformer with a language modeling head on top (linear layer with weights tied to the input |
|
embeddings). |
|
""", |
|
RWKV6MOE_START_DOCSTRING, |
|
) |
|
class Rwkv6MoeForCausalLM(Rwkv6MoePreTrainedModel): |
|
_tied_weights_keys = ["head.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = Rwkv6MoeModel(config) |
|
self.head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_output_embeddings(self): |
|
return self.head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.head = new_embeddings |
|
|
|
def prepare_inputs_for_generation(self, input_ids, state=None, inputs_embeds=None, **kwargs): |
|
|
|
if state is not None: |
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
|
|
|
|
if inputs_embeds is not None and state is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs["state"] = state |
|
return model_inputs |
|
|
|
@add_start_docstrings_to_model_forward(RWKV6MOE_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=Rwkv6MoeCausalLMOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
state: Optional[List[torch.FloatTensor]] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, Rwkv6MoeCausalLMOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set |
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` |
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.model( |
|
input_ids, |
|
inputs_embeds=inputs_embeds, |
|
state=state, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = outputs[0] |
|
|
|
logits = self.head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
labels = labels.to(logits.device) |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return Rwkv6MoeCausalLMOutput( |
|
loss=loss, |
|
logits=logits, |
|
state=outputs.state, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|