SmerkyG commited on
Commit
17c2f35
·
verified ·
1 Parent(s): 6ed42cc

Upload folder using huggingface_hub

Browse files
.ipynb_checkpoints/added_tokens-checkpoint.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<s>": 0
3
+ }
.ipynb_checkpoints/config-checkpoint.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Rwkv6MoeForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_rwkv6_moe.Rwkv6MoeConfig",
7
+ "AutoModelForCausalLM": "modeling_rwkv6_moe.Rwkv6MoeForCausalLM"
8
+ },
9
+ "attention_hidden_size": 4096,
10
+ "bos_token_id": 0,
11
+ "eos_token_id": 0,
12
+ "head_size": 64,
13
+ "head_size_divisor": 8,
14
+ "hidden_size": 4096,
15
+ "intermediate_size": null,
16
+ "layer_norm_epsilon": 1e-05,
17
+ "model_type": "rwkv6_moe",
18
+ "num_attention_heads": 64,
19
+ "num_experts": 8,
20
+ "num_hidden_layers": 32,
21
+ "rescale_every": 6,
22
+ "tie_word_embeddings": false,
23
+ "transformers_version": "4.34.0",
24
+ "use_cache": true,
25
+ "vocab_size": 65536
26
+ }
.ipynb_checkpoints/configuration_rwkv6_moe-checkpoint.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The OpenAI Team Authors and HuggingFace Inc. team.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ RWKV configuration"""
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+ RWKV6_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
25
+
26
+
27
+ class Rwkv6MoeConfig(PretrainedConfig):
28
+ """
29
+ This is the configuration class to store the configuration of a [`Rwkv6MoeModel`]. It is used to instantiate a RWKV6Moe
30
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
31
+ defaults will yield a similar configuration to that of the RWVK-4
32
+ [RWKV/rwkv-5-world-1b5](https://huggingface.co/RWKV/rwkv-5-world-1b5) architecture.
33
+
34
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
35
+ documentation from [`PretrainedConfig`] for more information.
36
+
37
+
38
+ Args:
39
+ vocab_size (`int`, *optional*, defaults to 65536):
40
+ Vocabulary size of the RWKV6Moe model. Defines the number of different tokens that can be represented by the
41
+ `inputs_ids` passed when calling [`Rwkv6MoeModel`].
42
+ hidden_size (`int`, *optional*, defaults to 768):
43
+ Dimensionality of the embeddings and hidden states.
44
+ num_hidden_layers (`int`, *optional*, defaults to 24):
45
+ Number of hidden layers in the model.
46
+ attention_hidden_size (`int`, *optional*):
47
+ Dimensionality of the attention hidden states. Will default to `hidden_size` if unset.
48
+ num_attention_heads (`int`, *optional*, defaults to 64):
49
+ The attention heads to use in rwkv6 self_attention module.
50
+ head_size (`int`, *optional*, defaults to 64): head_size of rwkv6 self_attention module.
51
+ intermediate_size (`int`, *optional*):
52
+ Dimensionality of the inner feed-forward layers. Will default to 4 times `hidden_size` if unset.
53
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
54
+ The epsilon to use in the layer normalization layers.
55
+ shared_expert (`bool`, *optional*, defaults to True):
56
+ Whether or not there is a shared expert
57
+ num_experts (`int`, *optional*, defaults to 8):
58
+ The number of feed forward network experts.
59
+ bos_token_id (`int`, *optional*, defaults to 0):
60
+ The id of the beginning of sentence token in the vocabulary. Defaults to 0.
61
+ eos_token_id (`int`, *optional*, defaults to 0):
62
+ The id of the end of sentence token in the vocabulary. Defaults to 0.
63
+ rescale_every (`int`, *optional*, defaults to 6):
64
+ At inference, the hidden states (and weights of the correponding output layers) are divided by 2 every
65
+ `rescale_every` layer. If set to 0 or a negative number, no rescale is done.
66
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
67
+ Whether or not to tie the word embeddings with the input token embeddings.
68
+ use_cache (`bool`, *optional*, defaults to `True`):
69
+ Whether or not the model should return the last state.
70
+
71
+
72
+ Example:
73
+
74
+ ```python
75
+ >>> from transformers import Rwkv6MoeConfig, Rwkv6MoeModel
76
+
77
+ >>> # Initializing a Rwkv6Moe configuration
78
+ >>> configuration = Rwkv6MoeConfig()
79
+
80
+ >>> # Initializing a model (with random weights) from the configuration
81
+ >>> model = Rwkv6MoeModel(configuration)
82
+
83
+ >>> # Accessing the model configuration
84
+ >>> configuration = model.config
85
+ ```"""
86
+
87
+ model_type = "rwkv6_moe"
88
+
89
+ def __init__(
90
+ self,
91
+ vocab_size=65536,
92
+ hidden_size=768,
93
+ num_hidden_layers=24,
94
+ attention_hidden_size=None,
95
+ head_size=64,
96
+ head_size_divisor=8,
97
+ intermediate_size=None,
98
+ layer_norm_epsilon=1e-5,
99
+ shared_expert=True,
100
+ num_experts=8,
101
+ bos_token_id=0,
102
+ eos_token_id=0,
103
+ rescale_every=6,
104
+ tie_word_embeddings=False,
105
+ use_cache=True,
106
+ **kwargs,
107
+ ):
108
+ self.vocab_size = vocab_size
109
+ self.hidden_size = hidden_size
110
+ self.num_hidden_layers = num_hidden_layers
111
+ self.attention_hidden_size = attention_hidden_size if attention_hidden_size is not None else hidden_size
112
+ self.head_size = head_size
113
+ self.head_size_divisor = head_size_divisor
114
+ self.intermediate_size = None
115
+ self.layer_norm_epsilon = layer_norm_epsilon
116
+ self.shared_expert = shared_expert
117
+ self.num_experts = num_experts
118
+ self.rescale_every = rescale_every
119
+ self.use_cache = use_cache
120
+
121
+ self.bos_token_id = bos_token_id
122
+ self.eos_token_id = eos_token_id
123
+
124
+ super().__init__(
125
+ tie_word_embeddings=tie_word_embeddings, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs
126
+ )
.ipynb_checkpoints/generation_config-checkpoint.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chat_format": "chatml",
3
+ "eos_token_id": 0,
4
+ "pad_token_id": 0,
5
+ "max_window_size": 4096,
6
+ "max_new_tokens": 4096,
7
+ "do_sample": true,
8
+ "top_k": 0,
9
+ "top_p": 0.1,
10
+ "repetition_penalty": 1.0,
11
+ "transformers_version": "4.31.1"
12
+ }
.ipynb_checkpoints/modeling_rwkv6_moe-checkpoint.py ADDED
@@ -0,0 +1,801 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The RWKV team and HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """PyTorch RWKV6Moe World model."""
16
+
17
+ from dataclasses import dataclass
18
+ from typing import List, Optional, Tuple, Union
19
+
20
+ from pathlib import Path
21
+
22
+ import torch
23
+ import torch.nn.functional as F
24
+ import torch.utils.checkpoint
25
+ from torch import nn
26
+ from torch.nn import CrossEntropyLoss
27
+
28
+ from transformers.modeling_utils import PreTrainedModel
29
+ from transformers.utils import (
30
+ ModelOutput,
31
+ add_code_sample_docstrings,
32
+ add_start_docstrings,
33
+ add_start_docstrings_to_model_forward,
34
+ is_ninja_available,
35
+ is_torch_cuda_available,
36
+ logging,
37
+ )
38
+
39
+ from .configuration_rwkv6_moe import Rwkv6MoeConfig
40
+ try:
41
+ from fla.ops.rwkv6 import fused_recurrent_rwkv6
42
+ except ImportError:
43
+ print("Required module is not installed. Please install it using the following commands:")
44
+ print("pip install -U git+https://github.com/sustcsonglin/flash-linear-attention")
45
+ print("Additionally, ensure you have the correct version of Triton installed:")
46
+ print("pip install triton==2.2.0")
47
+
48
+
49
+ logger = logging.get_logger(__name__)
50
+
51
+ _CHECKPOINT_FOR_DOC = "RWKV/rwkv-6-moe-11a41b"
52
+ _CONFIG_FOR_DOC = "Rwkv6MoeConfig"
53
+
54
+ def rwkv6_moe_linear_attention_cpu(receptance, key, value, time_decay, time_first, state):
55
+ # For CPU fallback. Will be slower and probably take more memory than the custom CUDA kernel if not executed
56
+ # within a torch.no_grad.
57
+ batch, seq_length, _ = receptance.shape
58
+ num_heads, head_size = time_first.shape
59
+ key = key.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2).transpose(-2, -1)
60
+ value = value.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2)
61
+ receptance = receptance.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2)
62
+ time_decay = torch.exp(-torch.exp(time_decay.float())).view(batch, seq_length, num_heads, head_size).permute(0, 2, 3, 1)
63
+ time_first = time_first.float().reshape(-1, 1, 1).reshape(num_heads, -1, 1)
64
+ out = torch.zeros_like(key).reshape(batch, seq_length, num_heads, head_size)
65
+
66
+ for current_index in range(seq_length):
67
+ current_receptance = receptance[:, :, current_index:current_index+1, :]
68
+ current_key = key[:, :, :, current_index:current_index+1]
69
+ current_value = value[:, :, current_index:current_index+1, :]
70
+ current_time_decay = time_decay[:, :, :, current_index:current_index+1]
71
+ attention_output = current_key @ current_value
72
+ out[:, current_index] = (current_receptance @ (time_first * attention_output + state)).squeeze(2)
73
+ with torch.no_grad():
74
+ state = attention_output + current_time_decay * state
75
+
76
+ return out, state
77
+
78
+ def rwkv6_moe_linear_attention(
79
+ training,
80
+ receptance,
81
+ key,
82
+ value,
83
+ time_decay,
84
+ time_first,
85
+ state,
86
+ ):
87
+ no_cuda = any(t.device.type != "cuda" for t in [time_decay, time_first, receptance, key, value])
88
+ # Launching the CUDA kernel for just one token will actually be slower (there is no for loop in the CPU version
89
+ # in this case).
90
+ one_token = key.size(1) == 1
91
+ if not training or no_cuda or one_token:
92
+ return rwkv6_moe_linear_attention_cpu(
93
+ receptance, key, value, time_decay, time_first, state
94
+ )
95
+ else:
96
+ batch, seq_length, _ = receptance.shape
97
+ num_heads, head_size = time_first.shape
98
+ key = key.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2) # B, T, H, K -> B, H, T, K
99
+ value = value.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2) # B, T, H, K - > B, H, T, V
100
+ receptance = receptance.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2) # B, H, T, K
101
+ time_decay = -torch.exp(time_decay.float()).view(batch, seq_length, num_heads, head_size).permute(0, 2, 1, 3) # B, T, H, K -> B, H, T, K
102
+ time_first = time_first.float().reshape(num_heads, head_size) # H, K
103
+ out, state = fused_recurrent_rwkv6(receptance, key, value, time_decay, time_first, scale=1.0, initial_state=state, output_final_state=True)
104
+ return out.transpose(1, 2), state
105
+
106
+
107
+ class Rwkv6MoeSelfAttention(nn.Module):
108
+ def __init__(self, config, layer_id=0):
109
+ super().__init__()
110
+ self.config = config
111
+ self.layer_id = layer_id
112
+ hidden_size = config.hidden_size
113
+ attention_hidden_size = config.attention_hidden_size
114
+ self.attention_hidden_size = attention_hidden_size
115
+ head_size = config.head_size
116
+ num_heads = attention_hidden_size // head_size
117
+
118
+ self.time_maa_x = nn.Parameter(torch.empty(1, 1, hidden_size))
119
+ self.time_maa_w = nn.Parameter(torch.empty(1, 1, hidden_size))
120
+ self.time_maa_k = nn.Parameter(torch.empty(1, 1, hidden_size))
121
+ self.time_maa_v = nn.Parameter(torch.empty(1, 1, hidden_size))
122
+ self.time_maa_r = nn.Parameter(torch.empty(1, 1, hidden_size))
123
+ self.time_maa_g = nn.Parameter(torch.empty(1, 1, hidden_size))
124
+
125
+ TIME_MIX_EXTRA_DIM = 32 # generate TIME_MIX for w,k,v,r,g
126
+ if hidden_size == 4096: #7b
127
+ TIME_MIX_EXTRA_DIM = 64
128
+ self.time_maa_w1 = nn.Parameter(torch.empty(hidden_size, TIME_MIX_EXTRA_DIM*5))
129
+ self.time_maa_w2 = nn.Parameter(torch.empty(5, TIME_MIX_EXTRA_DIM, hidden_size))
130
+
131
+ self.time_decay = nn.Parameter(torch.empty(1, 1, attention_hidden_size))
132
+
133
+ TIME_DECAY_EXTRA_DIM = 64
134
+ if hidden_size == 4096: #7b
135
+ TIME_DECAY_EXTRA_DIM = 128
136
+ self.time_decay_w1 = nn.Parameter(torch.empty(hidden_size, TIME_DECAY_EXTRA_DIM))
137
+ self.time_decay_w2 = nn.Parameter(torch.empty(TIME_DECAY_EXTRA_DIM, attention_hidden_size))
138
+
139
+ self.time_faaaa = nn.Parameter(torch.empty(num_heads, config.head_size))
140
+
141
+
142
+ self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
143
+ self.receptance = nn.Linear(hidden_size, attention_hidden_size, bias=False)
144
+ self.key = nn.Linear(hidden_size, attention_hidden_size, bias=False)
145
+ self.value = nn.Linear(hidden_size, attention_hidden_size, bias=False)
146
+ self.gate = nn.Linear(hidden_size, attention_hidden_size, bias=False)
147
+ self.output = nn.Linear(attention_hidden_size, hidden_size, bias=False)
148
+ self.ln_x = nn.GroupNorm(num_heads, hidden_size, eps=(1e-5)*(config.head_size_divisor**2))
149
+
150
+ def extract_key_value(self, hidden, state=None):
151
+ # Mix hidden with the previous timestep to produce key, value, receptance
152
+ if hidden.size(1) == 1 and state is not None:
153
+ shifted = state[0][:, :, self.layer_id]
154
+ else:
155
+ shifted = self.time_shift(hidden)
156
+ if state is not None:
157
+ shifted[:, 0] = state[0][:, :, self.layer_id]
158
+ if len(shifted.size()) == 2:
159
+ shifted = shifted.unsqueeze(1)
160
+
161
+ x = hidden
162
+
163
+ B, T, C = hidden.shape
164
+
165
+ xx = shifted - x
166
+
167
+ xxx = x + xx * self.time_maa_x
168
+ xxx = torch.tanh(xxx @ self.time_maa_w1).view(B*T, 5, -1).transpose(0, 1)
169
+ xxx = torch.bmm(xxx, self.time_maa_w2).view(5, B, T, -1)
170
+ mw, mk, mv, mr, mg = xxx.unbind(dim=0)
171
+
172
+ time_decay = x + xx * (self.time_maa_w + mw)
173
+ key = x + xx * (self.time_maa_k + mk)
174
+ value = x + xx * (self.time_maa_v + mv)
175
+ receptance = x + xx * (self.time_maa_r + mr)
176
+ gate = x + xx * (self.time_maa_g + mg)
177
+
178
+ receptance = self.receptance(receptance)
179
+ key = self.key(key)
180
+ value = self.value(value)
181
+ gate = F.silu(self.gate(gate))
182
+
183
+ time_decay = torch.tanh(time_decay @ self.time_decay_w1) @ self.time_decay_w2
184
+ time_decay = self.time_decay + time_decay
185
+
186
+ if state is not None:
187
+ state[0][:, :, self.layer_id] = hidden[:, -1]
188
+
189
+ return receptance, key, value, gate, time_decay, state
190
+
191
+ def forward(self, hidden, state=None, use_cache=False, seq_mode=True):
192
+ receptance, key, value, gate, time_decay, state = self.extract_key_value(hidden, state=state)
193
+
194
+ B,T,C = receptance.shape
195
+ H, S = self.time_faaaa.shape
196
+
197
+ layer_state = state[1][:, :, :, :, self.layer_id] if state is not None else None
198
+ out, layer_state = rwkv6_moe_linear_attention(
199
+ self.training, receptance, key, value, time_decay, self.time_faaaa, layer_state,
200
+ )
201
+
202
+ if layer_state is not None:
203
+ state[1][:, :, :, :, self.layer_id] = layer_state
204
+
205
+ out = out.reshape(B * T, H * S)
206
+ out = F.group_norm(out, num_groups=H, weight=self.ln_x.weight.to(out.dtype), bias=self.ln_x.bias.to(out.dtype), eps=self.ln_x.eps).reshape(B, T, H * S)
207
+ out = out.to(dtype=hidden.dtype) * gate
208
+ out = self.output(out)
209
+ return out, state
210
+
211
+ class Rwkv6MoeFeedForwardExpert(nn.Module):
212
+ def __init__(self, config, layer_id=0):
213
+ super().__init__()
214
+ hidden_size = config.hidden_size
215
+ # https://github.com/BlinkDL/RWKV-LM/blob/3db37a72356b736966ddd377268f02b80963af3f/RWKV-v4neo/train.py#L168
216
+ intermediate_size = (
217
+ config.intermediate_size
218
+ if config.intermediate_size is not None
219
+ else int((config.hidden_size * 3.5) // 32 * 32)
220
+ )
221
+
222
+ self.key = nn.Linear(hidden_size, intermediate_size, bias=False)
223
+ self.value = nn.Linear(intermediate_size, hidden_size, bias=False)
224
+
225
+ def forward(self, hidden, state=None):
226
+ return self.value( torch.relu( self.key(hidden) ).square() )
227
+
228
+ class Rwkv6MoeFeedForward(nn.Module):
229
+ def __init__(self, config, layer_id=0):
230
+ super().__init__()
231
+ self.config = config
232
+ self.layer_id = layer_id
233
+ hidden_size = config.hidden_size
234
+
235
+ self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
236
+ self.time_maa_k = nn.Parameter(torch.empty(1, 1, hidden_size))
237
+ self.time_maa_r = nn.Parameter(torch.empty(1, 1, hidden_size))
238
+
239
+ self.receptance = nn.Linear(hidden_size, hidden_size, bias=False)
240
+ self.shared_expert = Rwkv6MoeFeedForwardExpert(config, layer_id) if config.shared_expert else None
241
+ self.experts = nn.ModuleList([Rwkv6MoeFeedForwardExpert(config, layer_id) for _ in range(config.num_experts)])
242
+
243
+ primes = [5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443]
244
+ self.hash_prime = primes[layer_id]
245
+
246
+ def forward(self, hidden, input_ids:torch.LongTensor, state=None):
247
+ if hidden.size(1) == 1 and state is not None:
248
+ shifted = state[2][:, :, self.layer_id]
249
+ else:
250
+ shifted = self.time_shift(hidden)
251
+ if state is not None:
252
+ shifted[:, 0] = state[2][:, :, self.layer_id]
253
+ if len(shifted.size()) == 2:
254
+ shifted = shifted.unsqueeze(1)
255
+
256
+ delta_hidden_to_shifted = shifted - hidden
257
+ hidden_with_tokenshift = hidden + delta_hidden_to_shifted * self.time_maa_k
258
+ receptance = hidden + delta_hidden_to_shifted * self.time_maa_r
259
+
260
+ receptance = torch.sigmoid(self.receptance(receptance))
261
+
262
+ # flatten batch and sequence dimensions of input_ids and hidden_with_tokenshift
263
+ flat_input_ids = input_ids.flatten()
264
+ flat_hidden_with_tokenshift = hidden_with_tokenshift.reshape(-1, hidden_with_tokenshift.size(-1))
265
+
266
+ if self.shared_expert is not None:
267
+ flat_value = self.shared_expert(flat_hidden_with_tokenshift)
268
+ else:
269
+ flat_value = torch.zeros_like(flat_hidden_with_tokenshift)
270
+
271
+ # add in contributions from experts
272
+
273
+ # find the expert index for each flat index (flattened batchseq index)
274
+ expert_by_flat_idx = (flat_input_ids * self.hash_prime) % self.config.num_experts
275
+ # one hot mask of expert choices by flat batchseq index
276
+ expert_mask = torch.nn.functional.one_hot(expert_by_flat_idx, num_classes=self.config.num_experts).mT # expert_idx, flat_idx
277
+ # go through each expert and add in their contributions
278
+ for expert_idx in range(self.config.num_experts):
279
+ expert = self.experts[expert_idx]
280
+ # get a list of flat batchseq indices for the current expert
281
+ flat_indices_for_expert = expert_mask[expert_idx].nonzero().flatten()
282
+ if flat_indices_for_expert.size(-1) > 0:
283
+ # select out the inputs from this expert's flat batchseq locations into a compact tensor
284
+ expert_hidden_with_tokenshift = flat_hidden_with_tokenshift[flat_indices_for_expert]
285
+ # run the compact tensor through the expert
286
+ compact_expert_output = expert(expert_hidden_with_tokenshift)
287
+ # add the expert's results to the appropriate original locations
288
+ flat_value.index_add_(dim=0, index=flat_indices_for_expert, source=compact_expert_output)
289
+
290
+ value = flat_value.view(hidden.size(0), hidden.size(1), hidden.size(2))
291
+
292
+ if state is not None:
293
+ state[2][:, :, self.layer_id] = hidden[:, -1]
294
+
295
+ return receptance * value, state
296
+
297
+
298
+ class Rwkv6MoeBlock(nn.Module):
299
+ def __init__(self, config, layer_id):
300
+ super().__init__()
301
+ self.config = config
302
+ self.layer_id = layer_id
303
+
304
+ if layer_id == 0:
305
+ self.pre_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
306
+
307
+ self.ln1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
308
+ self.ln2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
309
+
310
+ self.attention = Rwkv6MoeSelfAttention(config, layer_id)
311
+ self.feed_forward = Rwkv6MoeFeedForward(config, layer_id)
312
+
313
+ def forward(self, hidden, input_ids:torch.LongTensor, state=None, use_cache=False, output_attentions=False, seq_mode=True):
314
+ if self.layer_id == 0:
315
+ hidden = self.pre_ln(hidden)
316
+ attention, state = self.attention(self.ln1(hidden), state=state, use_cache=use_cache, seq_mode=seq_mode)
317
+ hidden = hidden + attention
318
+
319
+ feed_forward, state = self.feed_forward(self.ln2(hidden), input_ids=input_ids, state=state)
320
+ hidden = hidden + feed_forward
321
+
322
+ outputs = (hidden, state)
323
+ if output_attentions:
324
+ outputs += (attention,)
325
+ else:
326
+ outputs += (None,)
327
+
328
+ return outputs
329
+
330
+
331
+ class Rwkv6MoePreTrainedModel(PreTrainedModel):
332
+ """
333
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
334
+ models.
335
+ """
336
+
337
+ config_class = Rwkv6MoeConfig
338
+ base_model_prefix = "rwkv6moe"
339
+ _no_split_modules = ["Rwkv6MoeBlock"]
340
+ _keep_in_fp32_modules = ["time_decay", "time_first"]
341
+ supports_gradient_checkpointing = True
342
+
343
+ def _init_weights(self, module):
344
+ """Initialize the weights."""
345
+ if isinstance(module, Rwkv6MoeSelfAttention):
346
+ layer_id = module.layer_id
347
+ num_hidden_layers = module.config.num_hidden_layers
348
+ hidden_size = module.config.hidden_size
349
+ attention_hidden_size = module.attention_hidden_size
350
+ head_size = module.config.head_size
351
+ num_heads = attention_hidden_size // head_size
352
+
353
+ ratio_0_to_1 = layer_id / (num_hidden_layers - 1) # 0 to 1
354
+ ratio_1_to_almost0 = 1.0 - (layer_id / num_hidden_layers) # 1 to ~0
355
+
356
+ time_weight = torch.tensor(
357
+ [i / hidden_size for i in range(hidden_size)],
358
+ dtype=module.time_maa_k.dtype,
359
+ device=module.time_maa_k.device,
360
+ )
361
+ time_weight = time_weight[None, None, :]
362
+
363
+ decay_speed = [
364
+ -6.0 + 5.0 * (h / (attention_hidden_size - 1)) ** (0.7 + 1.3 * ratio_0_to_1)
365
+ for h in range(attention_hidden_size)
366
+ ]
367
+ decay_speed = torch.tensor(decay_speed, dtype=module.time_decay.dtype, device=module.time_decay.device)
368
+ tmp = torch.tensor(
369
+ [
370
+ (1.0 - (i / (attention_hidden_size - 1.0))) * ratio_0_to_1 + 0.1 * ((i + 1) % 3 - 1)
371
+ for i in range(attention_hidden_size)
372
+ ],
373
+ dtype=module.time_faaaa.dtype,
374
+ device=module.time_faaaa.device,
375
+ )
376
+
377
+ with torch.no_grad():
378
+ module.time_maa_x.data = 1.0 - torch.pow(time_weight, ratio_1_to_almost0)
379
+ module.time_maa_w.data = 1.0 - torch.pow(time_weight, ratio_1_to_almost0)
380
+ module.time_maa_k.data = 1.0 - torch.pow(time_weight, ratio_1_to_almost0)
381
+ module.time_maa_v.data = 1.0 - (torch.pow(time_weight, ratio_1_to_almost0) + 0.3 * ratio_0_to_1)
382
+ module.time_maa_r.data = 1.0 - torch.pow(time_weight, 0.5 * ratio_1_to_almost0)
383
+ module.time_maa_g.data = 1.0 - torch.pow(time_weight, 0.5 * ratio_1_to_almost0)
384
+
385
+ TIME_MIX_EXTRA_DIM = 32 # generate TIME_MIX for w,k,v,r,g
386
+ module.time_maa_w1.data = torch.zeros(hidden_size, TIME_MIX_EXTRA_DIM*5, dtype=module.time_maa_w1.dtype, device=module.time_maa_w1.device).uniform_(-1e-4, 1e-4)
387
+ module.time_maa_w2.data = torch.zeros(5, TIME_MIX_EXTRA_DIM, hidden_size, dtype=module.time_maa_w2.dtype, device=module.time_maa_w2.device).uniform_(-1e-4, 1e-4)
388
+
389
+ TIME_DECAY_EXTRA_DIM = 64
390
+ module.time_decay_w1.data = torch.zeros(hidden_size, TIME_DECAY_EXTRA_DIM, dtype=module.time_decay_w1.dtype, device=module.time_decay_w1.device).uniform_(-1e-4, 1e-4)
391
+ module.time_decay_w2.data = torch.zeros(TIME_DECAY_EXTRA_DIM, attention_hidden_size, dtype=module.time_decay_w2.dtype, device=module.time_decay_w2.device).uniform_(-1e-4, 1e-4)
392
+
393
+ module.time_decay.data = decay_speed.reshape(num_heads, head_size)
394
+ module.time_faaaa.data = tmp.reshape(num_heads, head_size)
395
+
396
+ elif isinstance(module, Rwkv6MoeFeedForward):
397
+ layer_id = module.layer_id
398
+ num_hidden_layers = module.config.num_hidden_layers
399
+ hidden_size = module.config.hidden_size
400
+
401
+ ratio_1_to_almost0 = 1.0 - (layer_id / num_hidden_layers) # 1 to ~0
402
+
403
+ time_weight = torch.tensor(
404
+ [i / hidden_size for i in range(hidden_size)],
405
+ dtype=module.time_maa_k.dtype,
406
+ device=module.time_maa_k.device,
407
+ )
408
+ time_weight = time_weight[None, None, :]
409
+
410
+ with torch.no_grad():
411
+ module.time_maa_k.data = 1.0 - torch.pow(time_weight, ratio_1_to_almost0)
412
+ module.time_maa_r.data = 1.0 - torch.pow(time_weight, ratio_1_to_almost0)
413
+
414
+
415
+ @dataclass
416
+ class Rwkv6MoeOutput(ModelOutput):
417
+ """
418
+ Class for the RWKV model outputs.
419
+
420
+ Args:
421
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
422
+ Sequence of hidden-states at the output of the last layer of the model.
423
+ state (list of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`):
424
+ The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
425
+ avoid providing the old `input_ids`.
426
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
427
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
428
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of
429
+ the model at the output of each layer plus the optional initial embedding outputs.
430
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
431
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
432
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
433
+ the self-attention heads.
434
+ """
435
+
436
+ last_hidden_state: torch.FloatTensor = None
437
+ state: Optional[List[torch.FloatTensor]] = None
438
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
439
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
440
+
441
+
442
+ @dataclass
443
+ class Rwkv6MoeCausalLMOutput(ModelOutput):
444
+ """
445
+ Base class for causal language model (or autoregressive) outputs.
446
+
447
+ Args:
448
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
449
+ Language modeling loss (for next-token prediction).
450
+ logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
451
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
452
+ state (list of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`):
453
+ The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
454
+ avoid providing the old `input_ids`.
455
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
456
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
457
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of
458
+ the model at the output of each layer plus the optional initial embedding outputs.
459
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
460
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
461
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
462
+ the self-attention heads.
463
+ """
464
+
465
+ loss: Optional[torch.FloatTensor] = None
466
+ logits: torch.FloatTensor = None
467
+ state: Optional[List[torch.FloatTensor]] = None
468
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
469
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
470
+
471
+
472
+ RWKV6MOE_START_DOCSTRING = r"""
473
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
474
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
475
+ etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module)
476
+ subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
477
+ general usage and behavior.
478
+
479
+ Parameters:
480
+ config ([`Rwkv6MoeConfig`]): Model configuration class with all the parameters of the model.
481
+ Initializing with a config file does not load the weights associated with the model, only the
482
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
483
+ """
484
+
485
+ RWKV6MOE_INPUTS_DOCSTRING = r"""
486
+ Args:
487
+ input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
488
+ `input_ids_length` = `sequence_length` if `past_key_values` is `None` else
489
+ `past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
490
+ sequence tokens in the vocabulary. If `past_key_values` is used, only `input_ids` that do not have their
491
+ past calculated should be passed as `input_ids`. Indices can be obtained using [`AutoTokenizer`]. See
492
+ [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
493
+ IDs?](../glossary#input-ids)
494
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
495
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
496
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
497
+ model's internal embedding lookup matrix.
498
+ state (tuple of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`, *optional*):
499
+ If passed along, the model uses the previous state in all the blocks (which will give the output for the
500
+ `input_ids` provided as if the model add `state_input_ids + input_ids` as context).
501
+ use_cache (`bool`, *optional*):
502
+ If set to `True`, the last state is returned and can be used to quickly generate the next logits.
503
+ output_attentions (`bool`, *optional*):
504
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
505
+ tensors for more detail.
506
+ output_hidden_states (`bool`, *optional*):
507
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
508
+ more detail.
509
+ return_dict (`bool`, *optional*):
510
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
511
+ """
512
+
513
+
514
+ @add_start_docstrings(
515
+ "The bare RWKV6Moe Model transformer outputting raw hidden-states without any specific head on top.",
516
+ RWKV6MOE_START_DOCSTRING,
517
+ )
518
+ class Rwkv6MoeModel(Rwkv6MoePreTrainedModel):
519
+ def __init__(self, config):
520
+ super().__init__(config)
521
+
522
+ self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
523
+ self.blocks = nn.ModuleList([Rwkv6MoeBlock(config, layer_id=idx) for idx in range(config.num_hidden_layers)])
524
+ self.ln_out = nn.LayerNorm(config.hidden_size)
525
+
526
+ self.layers_are_rescaled = False
527
+ self.gradient_checkpointing = False
528
+
529
+ # Initialize weights and apply final processing
530
+ self.post_init()
531
+
532
+ def get_input_embeddings(self):
533
+ return self.embeddings
534
+
535
+ def set_input_embeddings(self, new_embeddings):
536
+ self.embeddings = new_embeddings
537
+
538
+ @add_start_docstrings_to_model_forward(RWKV6MOE_INPUTS_DOCSTRING)
539
+ @add_code_sample_docstrings(
540
+ checkpoint=_CHECKPOINT_FOR_DOC,
541
+ output_type=Rwkv6MoeOutput,
542
+ config_class=_CONFIG_FOR_DOC,
543
+ )
544
+ def forward(
545
+ self,
546
+ input_ids: Optional[torch.LongTensor] = None,
547
+ attention_mask: Optional[torch.LongTensor] = None, # noqa
548
+ inputs_embeds: Optional[torch.FloatTensor] = None,
549
+ state: Optional[List[torch.FloatTensor]] = None,
550
+ use_cache: Optional[bool] = None,
551
+ output_attentions: Optional[bool] = None,
552
+ output_hidden_states: Optional[bool] = None,
553
+ return_dict: Optional[bool] = None,
554
+ ) -> Union[Tuple, Rwkv6MoeOutput]:
555
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
556
+ output_hidden_states = (
557
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
558
+ )
559
+ # FIXME - training is supportable with the CUDA code
560
+ # rwkv6 only support inference in huggingface.
561
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
562
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
563
+
564
+ if self.training == self.layers_are_rescaled and (
565
+ self.embeddings.weight.dtype == torch.float16 or self.embeddings.weight.dtype == torch.bfloat16
566
+ ):
567
+ self._rescale_layers()
568
+
569
+ if input_ids is None:
570
+ raise ValueError("RWKV-MoE requires that you specify input_ids, as it uses these to select experts")
571
+ if input_ids is not None and inputs_embeds is not None:
572
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
573
+ elif input_ids is None and inputs_embeds is None:
574
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
575
+
576
+ if inputs_embeds is None:
577
+ inputs_embeds = self.embeddings(input_ids)
578
+
579
+ if state is None:
580
+ state = []
581
+ head_size = self.config.head_size
582
+ num_heads = self.config.attention_hidden_size // head_size
583
+ state_attn_x = torch.zeros(
584
+ (inputs_embeds.size(0), self.config.hidden_size, self.config.num_hidden_layers),
585
+ dtype=inputs_embeds.dtype,
586
+ requires_grad=False,
587
+ device=inputs_embeds.device,
588
+ ).contiguous()
589
+ state_attn_kv = torch.zeros(
590
+ (
591
+ inputs_embeds.size(0),
592
+ num_heads,
593
+ head_size,
594
+ head_size,
595
+ self.config.num_hidden_layers,
596
+ ),
597
+ dtype=torch.float32,
598
+ requires_grad=False,
599
+ device=inputs_embeds.device,
600
+ ).contiguous()
601
+ state_ffn_x = torch.zeros(
602
+ (inputs_embeds.size(0), self.config.hidden_size, self.config.num_hidden_layers),
603
+ dtype=inputs_embeds.dtype,
604
+ requires_grad=False,
605
+ device=inputs_embeds.device,
606
+ ).contiguous()
607
+ state.append(state_attn_x)
608
+ state.append(state_attn_kv)
609
+ state.append(state_ffn_x)
610
+
611
+ seq_mode = inputs_embeds.shape[1] > 1
612
+ hidden_states = inputs_embeds
613
+
614
+ all_self_attentions = () if output_attentions else None
615
+ all_hidden_states = () if output_hidden_states else None
616
+ for idx, block in enumerate(self.blocks):
617
+ hidden_states, state, attentions = block(
618
+ hidden_states, input_ids=input_ids, state=state, use_cache=use_cache, output_attentions=output_attentions, seq_mode=seq_mode
619
+ )
620
+ if (
621
+ self.layers_are_rescaled
622
+ and self.config.rescale_every > 0
623
+ and (idx + 1) % self.config.rescale_every == 0
624
+ ):
625
+ hidden_states = hidden_states / 2
626
+
627
+ if output_hidden_states:
628
+ all_hidden_states = all_hidden_states + (hidden_states,)
629
+
630
+ if output_attentions:
631
+ all_self_attentions = all_self_attentions + (attentions,)
632
+
633
+ hidden_states = self.ln_out(hidden_states)
634
+
635
+ if output_hidden_states:
636
+ all_hidden_states = all_hidden_states + (hidden_states,)
637
+
638
+ if not return_dict:
639
+ return (hidden_states, state, all_hidden_states, all_self_attentions)
640
+
641
+ return Rwkv6MoeOutput(
642
+ last_hidden_state=hidden_states,
643
+ state=state,
644
+ hidden_states=all_hidden_states, # None
645
+ attentions=all_self_attentions, # None
646
+ )
647
+
648
+ def _rescale_layers(self):
649
+ # Layers should be rescaled for inference only.
650
+ if self.layers_are_rescaled == (not self.training):
651
+ return
652
+ if self.config.rescale_every > 0:
653
+ with torch.no_grad():
654
+ for block_id, block in enumerate(self.blocks):
655
+ if self.training:
656
+ block.attention.output.weight.mul_(2 ** int(block_id // self.config.rescale_every))
657
+ block.feed_forward.shared_expert.value.weight.mul_(2 ** int(block_id // self.config.rescale_every))
658
+ for expert in block.feed_forward.experts:
659
+ expert.value.weight.mul_(2 ** int(block_id // self.config.rescale_every))
660
+ else:
661
+ # Deal with quantization statistics
662
+ if hasattr(block.attention.output.weight, "SCB"):
663
+ block.attention.output.weight.SCB.div_(2 ** int(block_id // self.config.rescale_every))
664
+ block.feed_forward.shared_expert.value.weight.SCB.div_(2 ** int(block_id // self.config.rescale_every))
665
+ for expert in block.feed_forward.experts:
666
+ expert.value.weight.SCB.div_(2 ** int(block_id // self.config.rescale_every))
667
+ elif hasattr(block.attention.output.weight, "quant_state"):
668
+ self._bnb_4bit_dequantize_and_rescale(block.attention.output, block_id)
669
+ self._bnb_4bit_dequantize_and_rescale(block.feed_forward.shared_expert.value, block_id)
670
+ for expert in block.feed_forward.experts:
671
+ self._bnb_4bit_dequantize_and_rescale(expert.value, block_id)
672
+ else:
673
+ block.attention.output.weight.div_(2 ** int(block_id // self.config.rescale_every))
674
+ block.feed_forward.shared_expert.value.weight.div_(2 ** int(block_id // self.config.rescale_every))
675
+ for expert in block.feed_forward.experts:
676
+ expert.value.weight.div_(2 ** int(block_id // self.config.rescale_every))
677
+
678
+ self.layers_are_rescaled = not self.training
679
+
680
+ def _bnb_4bit_dequantize_and_rescale(self, target_layer, block_id):
681
+ r"""
682
+ Perform the dequantization and rescaling of the weights of a given layer. After that operation the layer will
683
+ be quantized again.
684
+ """
685
+ if not is_bitsandbytes_available():
686
+ raise ImportError("Please install bitsandbytes to use this method.")
687
+ import bitsandbytes as bnb
688
+
689
+ dequant_weights = bnb.functional.dequantize_4bit(target_layer.weight.data, target_layer.weight.quant_state)
690
+
691
+ dequant_weights.div_(2 ** int(block_id // self.config.rescale_every))
692
+
693
+ # re-quantize the model:
694
+ # we need to put it first on CPU then back to the device
695
+ # this will create an overhead :/
696
+ # We set requires_grad=False as we cannot compute gradients on top of 4bit parameters anyway and to avoid
697
+ # bugs with bnb
698
+ quant_weight = bnb.nn.Params4bit(dequant_weights.to("cpu"), requires_grad=False).to(dequant_weights.device)
699
+ setattr(target_layer, "weight", quant_weight)
700
+
701
+
702
+ # copied from HuggingFace https://github.com/huggingface/transformers/blob/main/src/transformers/models/rwkv/modeling_rwkv.py
703
+ @add_start_docstrings(
704
+ """
705
+ The RWKV6Moe Model transformer with a language modeling head on top (linear layer with weights tied to the input
706
+ embeddings).
707
+ """,
708
+ RWKV6MOE_START_DOCSTRING,
709
+ )
710
+ class Rwkv6MoeForCausalLM(Rwkv6MoePreTrainedModel):
711
+ _tied_weights_keys = ["head.weight"]
712
+
713
+ def __init__(self, config):
714
+ super().__init__(config)
715
+ self.model = Rwkv6MoeModel(config)
716
+ self.head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
717
+
718
+ # Initialize weights and apply final processing
719
+ self.post_init()
720
+
721
+ def get_output_embeddings(self):
722
+ return self.head
723
+
724
+ def set_output_embeddings(self, new_embeddings):
725
+ self.head = new_embeddings
726
+
727
+ def prepare_inputs_for_generation(self, input_ids, state=None, inputs_embeds=None, **kwargs):
728
+ # only last token for inputs_ids if the state is passed along.
729
+ if state is not None:
730
+ input_ids = input_ids[:, -1].unsqueeze(-1)
731
+
732
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
733
+ if inputs_embeds is not None and state is None:
734
+ model_inputs = {"inputs_embeds": inputs_embeds}
735
+ else:
736
+ model_inputs = {"input_ids": input_ids}
737
+
738
+ model_inputs["state"] = state
739
+ return model_inputs
740
+
741
+ @add_start_docstrings_to_model_forward(RWKV6MOE_INPUTS_DOCSTRING)
742
+ @add_code_sample_docstrings(
743
+ checkpoint=_CHECKPOINT_FOR_DOC,
744
+ output_type=Rwkv6MoeCausalLMOutput,
745
+ config_class=_CONFIG_FOR_DOC,
746
+ )
747
+ def forward(
748
+ self,
749
+ input_ids: Optional[torch.LongTensor] = None,
750
+ attention_mask: Optional[torch.LongTensor] = None,
751
+ inputs_embeds: Optional[torch.FloatTensor] = None,
752
+ state: Optional[List[torch.FloatTensor]] = None,
753
+ labels: Optional[torch.LongTensor] = None,
754
+ use_cache: Optional[bool] = None,
755
+ output_attentions: Optional[bool] = None,
756
+ output_hidden_states: Optional[bool] = None,
757
+ return_dict: Optional[bool] = None,
758
+ ) -> Union[Tuple, Rwkv6MoeCausalLMOutput]:
759
+ r"""
760
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
761
+ Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
762
+ `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
763
+ are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
764
+ """
765
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
766
+
767
+ outputs = self.model(
768
+ input_ids,
769
+ inputs_embeds=inputs_embeds,
770
+ state=state,
771
+ use_cache=use_cache,
772
+ output_attentions=output_attentions,
773
+ output_hidden_states=output_hidden_states,
774
+ return_dict=return_dict,
775
+ )
776
+ hidden_states = outputs[0]
777
+
778
+ logits = self.head(hidden_states)
779
+
780
+ loss = None
781
+ if labels is not None:
782
+ # move labels to correct device to enable model parallelism
783
+ labels = labels.to(logits.device)
784
+ # Shift so that tokens < n predict n
785
+ shift_logits = logits[..., :-1, :].contiguous()
786
+ shift_labels = labels[..., 1:].contiguous()
787
+ # Flatten the tokens
788
+ loss_fct = CrossEntropyLoss()
789
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
790
+
791
+ if not return_dict:
792
+ output = (logits,) + outputs[1:]
793
+ return ((loss,) + output) if loss is not None else output
794
+
795
+ return Rwkv6MoeCausalLMOutput(
796
+ loss=loss,
797
+ logits=logits,
798
+ state=outputs.state,
799
+ hidden_states=outputs.hidden_states,
800
+ attentions=outputs.attentions,
801
+ )
README.md CHANGED
@@ -1,3 +1,219 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+ ### Huggingface RWKV Finch 7B Model
5
+
6
+ > HF compatible model for Finch-7B.
7
+
8
+ ![Finch Bird](./imgs/finch.jpg)
9
+
10
+
11
+ > **! Important Note !**
12
+ >
13
+ > The following is the HF transformers implementation of the Finch 7B model. This is meant to be used with the huggingface transformers
14
+ >
15
+ >
16
+
17
+
18
+ ## Quickstart with the hugging face transformer library
19
+
20
+ ```
21
+ model = AutoModelForCausalLM.from_pretrained("RWKV/v6-Finch-7B-HF", trust_remote_code=True).to(torch.float32)
22
+ tokenizer = AutoTokenizer.from_pretrained("RWKV/v6-Finch-7B-HF", trust_remote_code=True)
23
+ ```
24
+
25
+ ## Evaluation
26
+
27
+ The following demonstrates the improvements from Eagle 7B to Finch 14B
28
+
29
+ | | [Eagle 7B](https://huggingface.co/RWKV/v6-Finch-7B-HF) | [Finch 7B](https://huggingface.co/RWKV/v6-Finch-7B-HF) | [Finch 14B](https://huggingface.co/RWKV/v6-Finch-14B-HF) |
30
+ | --- | --- | --- | --- |
31
+ | [ARC](https://github.com/EleutherAI/lm-evaluation-harness/tree/main/lm_eval/tasks/arc) | 39.59% | 41.47% | 46.33% |
32
+ | [HellaSwag](https://github.com/EleutherAI/lm-evaluation-harness/tree/main/lm_eval/tasks/hellaswag) | 53.09% | 55.96% | 57.69% |
33
+ | [MMLU](https://github.com/EleutherAI/lm-evaluation-harness/tree/main/lm_eval/tasks/mmlu) | 30.86% | 41.70% | 56.05% |
34
+ | [Truthful QA](https://github.com/EleutherAI/lm-evaluation-harness/tree/main/lm_eval/tasks/truthfulqa) | 33.03% | 34.82% | 39.27% |
35
+ | [Winogrande](https://github.com/EleutherAI/lm-evaluation-harness/tree/main/lm_eval/tasks/winogrande) | 67.56% | 71.19% | 74.43% |
36
+
37
+ #### Running on CPU via HF transformers
38
+
39
+ ```python
40
+ import torch
41
+ from transformers import AutoModelForCausalLM, AutoTokenizer
42
+
43
+ def generate_prompt(instruction, input=""):
44
+ instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
45
+ input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
46
+ if input:
47
+ return f"""Instruction: {instruction}
48
+
49
+ Input: {input}
50
+
51
+ Response:"""
52
+ else:
53
+ return f"""User: hi
54
+
55
+ Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
56
+
57
+ User: {instruction}
58
+
59
+ Assistant:"""
60
+
61
+
62
+ model = AutoModelForCausalLM.from_pretrained("RWKV/v6-Finch-7B-HF", trust_remote_code=True).to(torch.float32)
63
+ tokenizer = AutoTokenizer.from_pretrained("RWKV/v6-Finch-7B-HF", trust_remote_code=True)
64
+
65
+ text = "请介绍北京的旅游景点"
66
+ prompt = generate_prompt(text)
67
+
68
+ inputs = tokenizer(prompt, return_tensors="pt")
69
+ output = model.generate(inputs["input_ids"], max_new_tokens=333, do_sample=True, temperature=1.0, top_p=0.3, top_k=0, )
70
+ print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
71
+ ```
72
+
73
+ output:
74
+
75
+ ```shell
76
+ User: hi
77
+
78
+ Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
79
+
80
+ User: 请介绍北京的旅游景点
81
+
82
+ Assistant: 北京是中国的首都,拥有众多的旅游景点,以下是其中一些著名的景点:
83
+ 1. 故宫:位于北京市中心,是明清两代的皇宫,内有大量的文物和艺术品。
84
+ 2. 天安门广场:是中国最著名的广场之一,是中国人民政治协商会议的旧址,也是中国人民政治协商会议的中心。
85
+ 3. 颐和园:是中国古代皇家园林之一,有着悠久的历史和丰富的文化内涵。
86
+ 4. 长城:是中国古代的一道长城,全长约万里,是中国最著名的旅游景点之一。
87
+ 5. 北京大学:是中国著名的高等教育机构之一,有着悠久的历史和丰富的文化内涵。
88
+ 6. 北京动物园:是中国最大的动物园之一,有着丰富的动物资源和丰富的文化内涵。
89
+ 7. 故宫博物院:是中国最著名的博物馆之一,收藏了大量的文物和艺术品,是中国最重要的文化遗产之一。
90
+ 8. 天坛:是中国古代皇家
91
+ ```
92
+
93
+ #### Running on GPU via HF transformers
94
+
95
+ ```python
96
+ import torch
97
+ from transformers import AutoModelForCausalLM, AutoTokenizer
98
+
99
+ def generate_prompt(instruction, input=""):
100
+ instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
101
+ input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
102
+ if input:
103
+ return f"""Instruction: {instruction}
104
+
105
+ Input: {input}
106
+
107
+ Response:"""
108
+ else:
109
+ return f"""User: hi
110
+
111
+ Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
112
+
113
+ User: {instruction}
114
+
115
+ Assistant:"""
116
+
117
+
118
+ model = AutoModelForCausalLM.from_pretrained("RWKV/v6-Finch-7B-HF", trust_remote_code=True, torch_dtype=torch.float16).to(0)
119
+ tokenizer = AutoTokenizer.from_pretrained("RWKV/v6-Finch-7B-HF", trust_remote_code=True)
120
+
121
+ text = "介绍一下大熊猫"
122
+ prompt = generate_prompt(text)
123
+
124
+ inputs = tokenizer(prompt, return_tensors="pt").to(0)
125
+ output = model.generate(inputs["input_ids"], max_new_tokens=128, do_sample=True, temperature=1.0, top_p=0.3, top_k=0, )
126
+ print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
127
+ ```
128
+
129
+ output:
130
+
131
+ ```shell
132
+ User: hi
133
+
134
+ Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
135
+
136
+ User: 介绍一下大熊猫
137
+
138
+ Assistant: 大熊猫是一种中国特有的哺乳动物,也是中国的国宝之一。它们的外貌特征是圆形的黑白相间的身体,有着黑色的毛发和白色的耳朵。大熊猫的食物主要是竹子,它们会在竹林中寻找竹子,并且会将竹子放在竹笼中进行储存。大熊猫的寿命约为20至30年,但由于栖息地的丧失和人类活动的
139
+ ```
140
+
141
+ #### Batch Inference
142
+
143
+ ```python
144
+ import torch
145
+ from transformers import AutoModelForCausalLM, AutoTokenizer
146
+
147
+ def generate_prompt(instruction, input=""):
148
+ instruction = instruction.strip().replace('\r\n', '\n').replace('\n\n', '\n')
149
+ input = input.strip().replace('\r\n', '\n').replace('\n\n', '\n')
150
+ if input:
151
+ return f"""Instruction: {instruction}
152
+
153
+ Input: {input}
154
+
155
+ Response:"""
156
+ else:
157
+ return f"""User: hi
158
+
159
+ Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
160
+
161
+ User: {instruction}
162
+
163
+ Assistant:"""
164
+
165
+ model = AutoModelForCausalLM.from_pretrained("RWKV/v6-Finch-7B-HF", trust_remote_code=True).to(torch.float32)
166
+ tokenizer = AutoTokenizer.from_pretrained("RWKV/v6-Finch-7B-HF", trust_remote_code=True)
167
+
168
+ texts = ["请介绍北京的旅游景点", "介绍一下大熊猫", "乌兰察布"]
169
+ prompts = [generate_prompt(text) for text in texts]
170
+
171
+ inputs = tokenizer(prompts, return_tensors="pt", padding=True)
172
+ outputs = model.generate(inputs["input_ids"], max_new_tokens=128, do_sample=True, temperature=1.0, top_p=0.3, top_k=0, )
173
+
174
+ for output in outputs:
175
+ print(tokenizer.decode(output.tolist(), skip_special_tokens=True))
176
+
177
+ ```
178
+
179
+ output:
180
+
181
+ ```shell
182
+ User: hi
183
+
184
+ Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
185
+
186
+ User: 请介绍北京的旅游景点
187
+
188
+ Assistant: 北京是中国的首都,拥有丰富的旅游资源和历史文化遗产。以下是一些北京的旅游景点:
189
+ 1. 故宫:位于北京市中心,是明清两代的皇宫,是中国最大的古代宫殿建筑群之一。
190
+ 2. 天安门广场:位于北京市中心,是中国最著名的城市广场之一,也是中国最大的城市广场。
191
+ 3. 颐和
192
+ User: hi
193
+
194
+ Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
195
+
196
+ User: 介绍一下大熊猫
197
+
198
+ Assistant: 大熊猫是一种生活在中国中部地区的哺乳动物,也是中国的国宝之一。它们的外貌特征是圆形的黑白相间的身体,有着黑色的毛发和圆圆的眼睛。大熊猫是一种濒危物种,目前只有在野外的几个保护区才能看到它们的身影。大熊猫的食物主要是竹子,它们会在竹子上寻找食物,并且可以通
199
+ User: hi
200
+
201
+ Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
202
+
203
+ User: 乌兰察布
204
+
205
+ Assistant: 乌兰察布是中国新疆维吾尔自治区的一个县级市,位于新疆维吾尔自治区中部,是新疆的第二大城市。乌兰察布市是新疆的第一大城市,也是新疆的重要城市之一。乌兰察布市是新疆的经济中心,也是新疆的重要交通枢纽之一。乌兰察布市的人口约为2.5万人,其中汉族占绝大多数。乌
206
+ ```
207
+
208
+ ## Links
209
+ - [Our wiki](https://wiki.rwkv.com)
210
+ - [Recursal.AI Cloud Platform](https://recursal.ai)
211
+ - [Featherless Inference](https://featherless.ai/models/RWKV/Finch-14B)
212
+ - [Blog article, detailing our model launch](https://blog.rwkv.com/p/rwkv-v6-finch-14b-is-here)
213
+
214
+ ## Acknowledgement
215
+ We are grateful for the help and support from the following key groups:
216
+
217
+ - [Recursal.ai](https://recursal.ai) team for financing the GPU resources, and managing the training of this foundation model - you can run the Finch line of RWKV models on their cloud / on-premise platform today.
218
+ - EleutherAI for their support, especially in the v5/v6 Eagle/Finch paper
219
+ - Linux Foundation AI & Data group for supporting and hosting the RWKV project
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<s>": 0
3
+ }
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Rwkv6MoeForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_rwkv6_moe.Rwkv6MoeConfig",
7
+ "AutoModelForCausalLM": "modeling_rwkv6_moe.Rwkv6MoeForCausalLM"
8
+ },
9
+ "attention_hidden_size": 4096,
10
+ "bos_token_id": 0,
11
+ "eos_token_id": 0,
12
+ "head_size": 64,
13
+ "head_size_divisor": 8,
14
+ "hidden_size": 4096,
15
+ "intermediate_size": null,
16
+ "layer_norm_epsilon": 1e-05,
17
+ "model_type": "rwkv6_moe",
18
+ "num_attention_heads": 64,
19
+ "num_experts": 8,
20
+ "num_hidden_layers": 32,
21
+ "rescale_every": 6,
22
+ "tie_word_embeddings": false,
23
+ "transformers_version": "4.34.0",
24
+ "use_cache": true,
25
+ "vocab_size": 65536
26
+ }
configuration_rwkv6_moe.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The OpenAI Team Authors and HuggingFace Inc. team.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ RWKV configuration"""
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+ RWKV6_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
25
+
26
+
27
+ class Rwkv6MoeConfig(PretrainedConfig):
28
+ """
29
+ This is the configuration class to store the configuration of a [`Rwkv6MoeModel`]. It is used to instantiate a RWKV6Moe
30
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
31
+ defaults will yield a similar configuration to that of the RWVK-4
32
+ [RWKV/rwkv-5-world-1b5](https://huggingface.co/RWKV/rwkv-5-world-1b5) architecture.
33
+
34
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
35
+ documentation from [`PretrainedConfig`] for more information.
36
+
37
+
38
+ Args:
39
+ vocab_size (`int`, *optional*, defaults to 65536):
40
+ Vocabulary size of the RWKV6Moe model. Defines the number of different tokens that can be represented by the
41
+ `inputs_ids` passed when calling [`Rwkv6MoeModel`].
42
+ hidden_size (`int`, *optional*, defaults to 768):
43
+ Dimensionality of the embeddings and hidden states.
44
+ num_hidden_layers (`int`, *optional*, defaults to 24):
45
+ Number of hidden layers in the model.
46
+ attention_hidden_size (`int`, *optional*):
47
+ Dimensionality of the attention hidden states. Will default to `hidden_size` if unset.
48
+ num_attention_heads (`int`, *optional*, defaults to 64):
49
+ The attention heads to use in rwkv6 self_attention module.
50
+ head_size (`int`, *optional*, defaults to 64): head_size of rwkv6 self_attention module.
51
+ intermediate_size (`int`, *optional*):
52
+ Dimensionality of the inner feed-forward layers. Will default to 4 times `hidden_size` if unset.
53
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
54
+ The epsilon to use in the layer normalization layers.
55
+ shared_expert (`bool`, *optional*, defaults to True):
56
+ Whether or not there is a shared expert
57
+ num_experts (`int`, *optional*, defaults to 8):
58
+ The number of feed forward network experts.
59
+ bos_token_id (`int`, *optional*, defaults to 0):
60
+ The id of the beginning of sentence token in the vocabulary. Defaults to 0.
61
+ eos_token_id (`int`, *optional*, defaults to 0):
62
+ The id of the end of sentence token in the vocabulary. Defaults to 0.
63
+ rescale_every (`int`, *optional*, defaults to 6):
64
+ At inference, the hidden states (and weights of the correponding output layers) are divided by 2 every
65
+ `rescale_every` layer. If set to 0 or a negative number, no rescale is done.
66
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
67
+ Whether or not to tie the word embeddings with the input token embeddings.
68
+ use_cache (`bool`, *optional*, defaults to `True`):
69
+ Whether or not the model should return the last state.
70
+
71
+
72
+ Example:
73
+
74
+ ```python
75
+ >>> from transformers import Rwkv6MoeConfig, Rwkv6MoeModel
76
+
77
+ >>> # Initializing a Rwkv6Moe configuration
78
+ >>> configuration = Rwkv6MoeConfig()
79
+
80
+ >>> # Initializing a model (with random weights) from the configuration
81
+ >>> model = Rwkv6MoeModel(configuration)
82
+
83
+ >>> # Accessing the model configuration
84
+ >>> configuration = model.config
85
+ ```"""
86
+
87
+ model_type = "rwkv6_moe"
88
+
89
+ def __init__(
90
+ self,
91
+ vocab_size=65536,
92
+ hidden_size=768,
93
+ num_hidden_layers=24,
94
+ attention_hidden_size=None,
95
+ head_size=64,
96
+ head_size_divisor=8,
97
+ intermediate_size=None,
98
+ layer_norm_epsilon=1e-5,
99
+ shared_expert=True,
100
+ num_experts=8,
101
+ bos_token_id=0,
102
+ eos_token_id=0,
103
+ rescale_every=6,
104
+ tie_word_embeddings=False,
105
+ use_cache=True,
106
+ **kwargs,
107
+ ):
108
+ self.vocab_size = vocab_size
109
+ self.hidden_size = hidden_size
110
+ self.num_hidden_layers = num_hidden_layers
111
+ self.attention_hidden_size = attention_hidden_size if attention_hidden_size is not None else hidden_size
112
+ self.head_size = head_size
113
+ self.head_size_divisor = head_size_divisor
114
+ self.intermediate_size = None
115
+ self.layer_norm_epsilon = layer_norm_epsilon
116
+ self.shared_expert = shared_expert
117
+ self.num_experts = num_experts
118
+ self.rescale_every = rescale_every
119
+ self.use_cache = use_cache
120
+
121
+ self.bos_token_id = bos_token_id
122
+ self.eos_token_id = eos_token_id
123
+
124
+ super().__init__(
125
+ tie_word_embeddings=tie_word_embeddings, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs
126
+ )
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chat_format": "chatml",
3
+ "eos_token_id": 0,
4
+ "pad_token_id": 0,
5
+ "max_window_size": 4096,
6
+ "max_new_tokens": 4096,
7
+ "do_sample": true,
8
+ "top_k": 0,
9
+ "top_p": 0.1,
10
+ "repetition_penalty": 1.0,
11
+ "transformers_version": "4.31.1"
12
+ }
hf_rwkv_tokenizer.py ADDED
@@ -0,0 +1,279 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Tokenization classes for RWKV6."""
16
+
17
+ import os
18
+ import re
19
+ from typing import TYPE_CHECKING, List, Optional, Tuple
20
+
21
+ from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
22
+ from transformers.utils import logging
23
+
24
+
25
+ if TYPE_CHECKING:
26
+ pass
27
+
28
+ logger = logging.get_logger(__name__)
29
+
30
+
31
+ VOCAB_FILES_NAMES = {
32
+ "vocab_file": "rwkv_vocab_v20230424.txt",
33
+ }
34
+
35
+ class TRIE:
36
+ __slots__ = tuple("ch,to,values,front".split(","))
37
+ to: list
38
+ values: set
39
+
40
+ def __init__(self, front=None, ch=None):
41
+ self.ch = ch
42
+ self.to = [None for ch in range(256)]
43
+ self.values = set()
44
+ self.front = front
45
+
46
+ def __repr__(self):
47
+ fr = self
48
+ ret = []
49
+ while fr != None:
50
+ if fr.ch != None:
51
+ ret.append(fr.ch)
52
+ fr = fr.front
53
+ return "<TRIE %s %s>" % (ret[::-1], self.values)
54
+
55
+ def add(self, key: bytes, idx: int = 0, val=None):
56
+ if idx == len(key):
57
+ if val is None:
58
+ val = key
59
+ self.values.add(val)
60
+ return self
61
+ ch = key[idx]
62
+ if self.to[ch] is None:
63
+ self.to[ch] = TRIE(front=self, ch=ch)
64
+ return self.to[ch].add(key, idx=idx + 1, val=val)
65
+
66
+ def find_longest(self, key: bytes, idx: int = 0):
67
+ u: TRIE = self
68
+ ch: int = key[idx]
69
+
70
+ while u.to[ch] is not None:
71
+ u = u.to[ch]
72
+ idx += 1
73
+ if u.values:
74
+ ret = idx, u, u.values
75
+ if idx == len(key):
76
+ break
77
+ ch = key[idx]
78
+ return ret
79
+
80
+
81
+ class RWKV_TOKENIZER:
82
+ def __init__(self, file_name):
83
+ self.idx2token = {}
84
+ sorted = [] # must be already sorted
85
+ with open(file_name, "r", encoding="utf-8") as f:
86
+ lines = f.readlines()
87
+ for l in lines:
88
+ idx = int(l[: l.index(" ")])
89
+ x = eval(l[l.index(" ") : l.rindex(" ")])
90
+ x = x.encode("utf-8") if isinstance(x, str) else x
91
+ assert isinstance(x, bytes)
92
+
93
+ assert len(x) == int(l[l.rindex(" ") :])
94
+ sorted += [x]
95
+ self.idx2token[idx] = x
96
+
97
+ self.token2idx = {}
98
+ for k, v in self.idx2token.items():
99
+ self.token2idx[v] = int(k)
100
+
101
+ self.root = TRIE()
102
+ for t, i in self.token2idx.items():
103
+ _ = self.root.add(t, val=(t, i))
104
+
105
+ def encodeBytes(self, src: bytes):
106
+ idx: int = 0
107
+ tokens = []
108
+ while idx < len(src):
109
+ _idx: int = idx
110
+ idx, _, values = self.root.find_longest(src, idx)
111
+ assert idx != _idx
112
+ _, token = next(iter(values))
113
+ tokens.append(token)
114
+ return tokens
115
+
116
+ def decodeBytes(self, tokens):
117
+ return b"".join(map(lambda i: self.idx2token[i], tokens))
118
+
119
+ def encode(self, src):
120
+ if isinstance(src, str):
121
+ return [self.encodeBytes(src.encode("utf-8"))]
122
+ elif isinstance(src, list):
123
+ return [self.encodeBytes(s.encode("utf-8")) for s in src]
124
+
125
+ def decode(self, tokens):
126
+ return [self.decodeBytes(batch).decode("utf-8") for batch in tokens]
127
+ # try:
128
+ # return self.decodeBytes(tokens).decode('utf-8')
129
+ # except:
130
+ # return '\ufffd' # bad utf-8
131
+
132
+ def printTokens(self, tokens):
133
+ for i in tokens:
134
+ s = self.idx2token[i]
135
+ try:
136
+ s = s.decode("utf-8")
137
+ except:
138
+ pass
139
+ print(f"{repr(s)}{i}", end=" ")
140
+ print()
141
+
142
+
143
+ class Rwkv6Tokenizer(PreTrainedTokenizer):
144
+ vocab_files_names = VOCAB_FILES_NAMES
145
+ model_input_names = ["input_ids", "attention_mask"]
146
+
147
+ def __init__(
148
+ self, vocab_file, bos_token="<s>", eos_token="<s>", unk_token="<s>", **kwargs
149
+ ):
150
+ if not os.path.isfile(vocab_file):
151
+ raise ValueError(
152
+ f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
153
+ " model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
154
+ )
155
+
156
+ with open(vocab_file, "r", encoding="utf-8") as reader:
157
+ tokens = reader.readlines()
158
+
159
+ if "add_bos_token" in kwargs:
160
+ self.add_bos_token = kwargs["add_bos_token"]
161
+ else:
162
+ self.add_bos_token = False
163
+ self.trie_tokenizer = RWKV_TOKENIZER(vocab_file)
164
+ vocab = self.trie_tokenizer.token2idx
165
+ self.encoder = vocab
166
+ self.decoder = {v: k for k, v in vocab.items()}
167
+ self._added_tokens_decoder = {0: AddedToken(str(bos_token))}
168
+ super().__init__(
169
+ bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs
170
+ )
171
+
172
+ @property
173
+ def vocab_size(self):
174
+ return len(self.encoder)
175
+
176
+ def get_vocab(self):
177
+ vocab = {str(self.convert_ids_to_tokens(i)): i for i in range(self.vocab_size)}
178
+ vocab.update(self.added_tokens_encoder)
179
+ return vocab
180
+
181
+ def _tokenize(self, text, split_special_tokens=False):
182
+ # return self.wordpiece_tokenizer.tokenize(text.encode("utf-8"))
183
+ return self.trie_tokenizer.encode(text)[0]
184
+
185
+ def _convert_token_to_id(self, token):
186
+ return token
187
+
188
+ def _convert_id_to_token(self, index):
189
+ """Converts an index (integer) in a token (byte) using the vocab."""
190
+ token = self.decoder.get(index, self.unk_token)
191
+ if isinstance(token, (bytes)):
192
+ token = token.decode("utf-8", errors="replace")
193
+ return token
194
+
195
+ def convert_tokens_to_string(self, tokens):
196
+ """Converts a sequence of tokens (bytes) in a single string. Additional tokens are encoded to bytes"""
197
+ out_string = b"".join(
198
+ [k.encode(errors="replace") if isinstance(k, str) else k for k in tokens]
199
+ ).decode("utf-8")
200
+ return out_string
201
+
202
+ def save_vocabulary(
203
+ self, save_directory: str, filename_prefix: Optional[str] = None
204
+ ) -> Tuple[str]:
205
+ index = 0
206
+ if os.path.isdir(save_directory):
207
+ vocab_file = os.path.join(
208
+ save_directory,
209
+ (filename_prefix + "-" if filename_prefix else "") + "vocab.txt",
210
+ )
211
+ else:
212
+ vocab_file = (
213
+ filename_prefix + "-" if filename_prefix else ""
214
+ ) + save_directory
215
+ with open(vocab_file, "w", encoding="utf-8") as writer:
216
+ for token, token_index in sorted(
217
+ self.encoder.items(), key=lambda kv: kv[1]
218
+ ):
219
+ if index != token_index:
220
+ logger.warning(
221
+ f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
222
+ " Please check that the vocabulary is not corrupted!"
223
+ )
224
+ index = token_index
225
+ writer.write(str(token) + "\n")
226
+ index += 1
227
+ return (vocab_file,)
228
+
229
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
230
+ if self.add_bos_token:
231
+ bos_token_ids = [self.bos_token_id]
232
+ else:
233
+ bos_token_ids = []
234
+
235
+ output = bos_token_ids + token_ids_0
236
+
237
+ if token_ids_1 is None:
238
+ return output
239
+
240
+ return output + bos_token_ids + token_ids_1
241
+
242
+ def get_special_tokens_mask(
243
+ self,
244
+ token_ids_0: List[int],
245
+ token_ids_1: Optional[List[int]] = None,
246
+ already_has_special_tokens: bool = False,
247
+ ) -> List[int]:
248
+ """
249
+ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
250
+ special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
251
+
252
+ Args:
253
+ token_ids_0 (`List[int]`):
254
+ List of IDs.
255
+ token_ids_1 (`List[int]`, *optional*):
256
+ Optional second list of IDs for sequence pairs.
257
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
258
+ Whether or not the token list is already formatted with special tokens for the model.
259
+
260
+ Returns:
261
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
262
+ """
263
+ if already_has_special_tokens:
264
+ return super().get_special_tokens_mask(
265
+ token_ids_0=token_ids_0,
266
+ token_ids_1=token_ids_1,
267
+ already_has_special_tokens=True,
268
+ )
269
+
270
+ if not self.add_bos_token:
271
+ return super().get_special_tokens_mask(
272
+ token_ids_0=token_ids_0,
273
+ token_ids_1=token_ids_1,
274
+ already_has_special_tokens=False,
275
+ )
276
+
277
+ if token_ids_1 is None:
278
+ return [1] + ([0] * len(token_ids_0))
279
+ return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
imgs/crimson-finch-unsplash-david-clode.jpg ADDED
imgs/finch.jpg ADDED
model-00001-of-00016.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7caa55e5efda8a66896474dbc4d5d0b94b9828c88cbfad1d3bf09bc34f567d38
3
+ size 4947420816
model-00002-of-00016.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a82fd7a53ba5def2c9d4ed0e1a39233fb307318a7f74ddb8125c916772a1adcb
3
+ size 4981075680
model-00003-of-00016.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d4922c58ea4783237767a7b62cbaba87d5692ea08f5d71eb266856970f1b105
3
+ size 4954861688
model-00004-of-00016.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b8823f4fbb58c0bb00e29bd1027844b555572eca69b3a80b91560832d85e9a3
3
+ size 4997786336
model-00005-of-00016.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2596faaa260857285883dd451e2f7b55450b8aa7bafa63ae4f12b27e67bd5f89
3
+ size 4997786336
model-00006-of-00016.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9231896ad98bbf948dee61a20abb77bb0f7e0f14b056944181337d638db779ce
3
+ size 4997786304
model-00007-of-00016.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd83abc49dc1cc7de1ce546bd1f88131f4ba8694d5d1460e479b7561930511d1
3
+ size 4997786280
model-00008-of-00016.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:398916d33ec9c51730fb270b03a82214cfc17fa72b209590068e2e8379944647
3
+ size 4913900208
model-00009-of-00016.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48b3b1a36c3a6a439636abb480d7495cc398d60c50723636b04d4136a2eae0fa
3
+ size 4981075688
model-00010-of-00016.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f80db4eee49461ceeeedb8b2c1df89f859f93faf8ea9aa85ddf485290d0e1a7
3
+ size 4954861688
model-00011-of-00016.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76a6be134dcb63d252bc753e5f480b0177d41d196129a9fedb3dcc1cffbba532
3
+ size 4997786312
model-00012-of-00016.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9948bcbfe612a30f2477b1ff0b7259ee40ef0732774b461767606eaf9a265e28
3
+ size 4997786320
model-00013-of-00016.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1836ce339774915428cd29a322402e825984ee11756dafe5729491bb1022c459
3
+ size 4997786264
model-00014-of-00016.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aaa855b34d666ca4a7cd2cb1094fe11f8ccb3ebbeb1beadfad65fea5c5511d29
3
+ size 4997786200
model-00015-of-00016.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9bc097d781d5d4758b446731d0367d01d0580967c800cf75e74c4aeaf4cb2c5b
3
+ size 4913900112
model-00016-of-00016.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0fb59e6bda056de8212f624c15b8d4fe6bfbc4ef208fc910aa4bc9a60f3d746d
3
+ size 771818664
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
modeling_rwkv6_moe.py ADDED
@@ -0,0 +1,801 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The RWKV team and HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """PyTorch RWKV6Moe World model."""
16
+
17
+ from dataclasses import dataclass
18
+ from typing import List, Optional, Tuple, Union
19
+
20
+ from pathlib import Path
21
+
22
+ import torch
23
+ import torch.nn.functional as F
24
+ import torch.utils.checkpoint
25
+ from torch import nn
26
+ from torch.nn import CrossEntropyLoss
27
+
28
+ from transformers.modeling_utils import PreTrainedModel
29
+ from transformers.utils import (
30
+ ModelOutput,
31
+ add_code_sample_docstrings,
32
+ add_start_docstrings,
33
+ add_start_docstrings_to_model_forward,
34
+ is_ninja_available,
35
+ is_torch_cuda_available,
36
+ logging,
37
+ )
38
+
39
+ from .configuration_rwkv6_moe import Rwkv6MoeConfig
40
+ try:
41
+ from fla.ops.rwkv6 import fused_recurrent_rwkv6
42
+ except ImportError:
43
+ print("Required module is not installed. Please install it using the following commands:")
44
+ print("pip install -U git+https://github.com/sustcsonglin/flash-linear-attention")
45
+ print("Additionally, ensure you have the correct version of Triton installed:")
46
+ print("pip install triton==2.2.0")
47
+
48
+
49
+ logger = logging.get_logger(__name__)
50
+
51
+ _CHECKPOINT_FOR_DOC = "RWKV/rwkv-6-moe-11a41b"
52
+ _CONFIG_FOR_DOC = "Rwkv6MoeConfig"
53
+
54
+ def rwkv6_moe_linear_attention_cpu(receptance, key, value, time_decay, time_first, state):
55
+ # For CPU fallback. Will be slower and probably take more memory than the custom CUDA kernel if not executed
56
+ # within a torch.no_grad.
57
+ batch, seq_length, _ = receptance.shape
58
+ num_heads, head_size = time_first.shape
59
+ key = key.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2).transpose(-2, -1)
60
+ value = value.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2)
61
+ receptance = receptance.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2)
62
+ time_decay = torch.exp(-torch.exp(time_decay.float())).view(batch, seq_length, num_heads, head_size).permute(0, 2, 3, 1)
63
+ time_first = time_first.float().reshape(-1, 1, 1).reshape(num_heads, -1, 1)
64
+ out = torch.zeros_like(key).reshape(batch, seq_length, num_heads, head_size)
65
+
66
+ for current_index in range(seq_length):
67
+ current_receptance = receptance[:, :, current_index:current_index+1, :]
68
+ current_key = key[:, :, :, current_index:current_index+1]
69
+ current_value = value[:, :, current_index:current_index+1, :]
70
+ current_time_decay = time_decay[:, :, :, current_index:current_index+1]
71
+ attention_output = current_key @ current_value
72
+ out[:, current_index] = (current_receptance @ (time_first * attention_output + state)).squeeze(2)
73
+ with torch.no_grad():
74
+ state = attention_output + current_time_decay * state
75
+
76
+ return out, state
77
+
78
+ def rwkv6_moe_linear_attention(
79
+ training,
80
+ receptance,
81
+ key,
82
+ value,
83
+ time_decay,
84
+ time_first,
85
+ state,
86
+ ):
87
+ no_cuda = any(t.device.type != "cuda" for t in [time_decay, time_first, receptance, key, value])
88
+ # Launching the CUDA kernel for just one token will actually be slower (there is no for loop in the CPU version
89
+ # in this case).
90
+ one_token = key.size(1) == 1
91
+ if not training or no_cuda or one_token:
92
+ return rwkv6_moe_linear_attention_cpu(
93
+ receptance, key, value, time_decay, time_first, state
94
+ )
95
+ else:
96
+ batch, seq_length, _ = receptance.shape
97
+ num_heads, head_size = time_first.shape
98
+ key = key.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2) # B, T, H, K -> B, H, T, K
99
+ value = value.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2) # B, T, H, K - > B, H, T, V
100
+ receptance = receptance.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2) # B, H, T, K
101
+ time_decay = -torch.exp(time_decay.float()).view(batch, seq_length, num_heads, head_size).permute(0, 2, 1, 3) # B, T, H, K -> B, H, T, K
102
+ time_first = time_first.float().reshape(num_heads, head_size) # H, K
103
+ out, state = fused_recurrent_rwkv6(receptance, key, value, time_decay, time_first, scale=1.0, initial_state=state, output_final_state=True)
104
+ return out.transpose(1, 2), state
105
+
106
+
107
+ class Rwkv6MoeSelfAttention(nn.Module):
108
+ def __init__(self, config, layer_id=0):
109
+ super().__init__()
110
+ self.config = config
111
+ self.layer_id = layer_id
112
+ hidden_size = config.hidden_size
113
+ attention_hidden_size = config.attention_hidden_size
114
+ self.attention_hidden_size = attention_hidden_size
115
+ head_size = config.head_size
116
+ num_heads = attention_hidden_size // head_size
117
+
118
+ self.time_maa_x = nn.Parameter(torch.empty(1, 1, hidden_size))
119
+ self.time_maa_w = nn.Parameter(torch.empty(1, 1, hidden_size))
120
+ self.time_maa_k = nn.Parameter(torch.empty(1, 1, hidden_size))
121
+ self.time_maa_v = nn.Parameter(torch.empty(1, 1, hidden_size))
122
+ self.time_maa_r = nn.Parameter(torch.empty(1, 1, hidden_size))
123
+ self.time_maa_g = nn.Parameter(torch.empty(1, 1, hidden_size))
124
+
125
+ TIME_MIX_EXTRA_DIM = 32 # generate TIME_MIX for w,k,v,r,g
126
+ if hidden_size == 4096: #7b
127
+ TIME_MIX_EXTRA_DIM = 64
128
+ self.time_maa_w1 = nn.Parameter(torch.empty(hidden_size, TIME_MIX_EXTRA_DIM*5))
129
+ self.time_maa_w2 = nn.Parameter(torch.empty(5, TIME_MIX_EXTRA_DIM, hidden_size))
130
+
131
+ self.time_decay = nn.Parameter(torch.empty(1, 1, attention_hidden_size))
132
+
133
+ TIME_DECAY_EXTRA_DIM = 64
134
+ if hidden_size == 4096: #7b
135
+ TIME_DECAY_EXTRA_DIM = 128
136
+ self.time_decay_w1 = nn.Parameter(torch.empty(hidden_size, TIME_DECAY_EXTRA_DIM))
137
+ self.time_decay_w2 = nn.Parameter(torch.empty(TIME_DECAY_EXTRA_DIM, attention_hidden_size))
138
+
139
+ self.time_faaaa = nn.Parameter(torch.empty(num_heads, config.head_size))
140
+
141
+
142
+ self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
143
+ self.receptance = nn.Linear(hidden_size, attention_hidden_size, bias=False)
144
+ self.key = nn.Linear(hidden_size, attention_hidden_size, bias=False)
145
+ self.value = nn.Linear(hidden_size, attention_hidden_size, bias=False)
146
+ self.gate = nn.Linear(hidden_size, attention_hidden_size, bias=False)
147
+ self.output = nn.Linear(attention_hidden_size, hidden_size, bias=False)
148
+ self.ln_x = nn.GroupNorm(num_heads, hidden_size, eps=(1e-5)*(config.head_size_divisor**2))
149
+
150
+ def extract_key_value(self, hidden, state=None):
151
+ # Mix hidden with the previous timestep to produce key, value, receptance
152
+ if hidden.size(1) == 1 and state is not None:
153
+ shifted = state[0][:, :, self.layer_id]
154
+ else:
155
+ shifted = self.time_shift(hidden)
156
+ if state is not None:
157
+ shifted[:, 0] = state[0][:, :, self.layer_id]
158
+ if len(shifted.size()) == 2:
159
+ shifted = shifted.unsqueeze(1)
160
+
161
+ x = hidden
162
+
163
+ B, T, C = hidden.shape
164
+
165
+ xx = shifted - x
166
+
167
+ xxx = x + xx * self.time_maa_x
168
+ xxx = torch.tanh(xxx @ self.time_maa_w1).view(B*T, 5, -1).transpose(0, 1)
169
+ xxx = torch.bmm(xxx, self.time_maa_w2).view(5, B, T, -1)
170
+ mw, mk, mv, mr, mg = xxx.unbind(dim=0)
171
+
172
+ time_decay = x + xx * (self.time_maa_w + mw)
173
+ key = x + xx * (self.time_maa_k + mk)
174
+ value = x + xx * (self.time_maa_v + mv)
175
+ receptance = x + xx * (self.time_maa_r + mr)
176
+ gate = x + xx * (self.time_maa_g + mg)
177
+
178
+ receptance = self.receptance(receptance)
179
+ key = self.key(key)
180
+ value = self.value(value)
181
+ gate = F.silu(self.gate(gate))
182
+
183
+ time_decay = torch.tanh(time_decay @ self.time_decay_w1) @ self.time_decay_w2
184
+ time_decay = self.time_decay + time_decay
185
+
186
+ if state is not None:
187
+ state[0][:, :, self.layer_id] = hidden[:, -1]
188
+
189
+ return receptance, key, value, gate, time_decay, state
190
+
191
+ def forward(self, hidden, state=None, use_cache=False, seq_mode=True):
192
+ receptance, key, value, gate, time_decay, state = self.extract_key_value(hidden, state=state)
193
+
194
+ B,T,C = receptance.shape
195
+ H, S = self.time_faaaa.shape
196
+
197
+ layer_state = state[1][:, :, :, :, self.layer_id] if state is not None else None
198
+ out, layer_state = rwkv6_moe_linear_attention(
199
+ self.training, receptance, key, value, time_decay, self.time_faaaa, layer_state,
200
+ )
201
+
202
+ if layer_state is not None:
203
+ state[1][:, :, :, :, self.layer_id] = layer_state
204
+
205
+ out = out.reshape(B * T, H * S)
206
+ out = F.group_norm(out, num_groups=H, weight=self.ln_x.weight.to(out.dtype), bias=self.ln_x.bias.to(out.dtype), eps=self.ln_x.eps).reshape(B, T, H * S)
207
+ out = out.to(dtype=hidden.dtype) * gate
208
+ out = self.output(out)
209
+ return out, state
210
+
211
+ class Rwkv6MoeFeedForwardExpert(nn.Module):
212
+ def __init__(self, config, layer_id=0):
213
+ super().__init__()
214
+ hidden_size = config.hidden_size
215
+ # https://github.com/BlinkDL/RWKV-LM/blob/3db37a72356b736966ddd377268f02b80963af3f/RWKV-v4neo/train.py#L168
216
+ intermediate_size = (
217
+ config.intermediate_size
218
+ if config.intermediate_size is not None
219
+ else int((config.hidden_size * 3.5) // 32 * 32)
220
+ )
221
+
222
+ self.key = nn.Linear(hidden_size, intermediate_size, bias=False)
223
+ self.value = nn.Linear(intermediate_size, hidden_size, bias=False)
224
+
225
+ def forward(self, hidden, state=None):
226
+ return self.value( torch.relu( self.key(hidden) ).square() )
227
+
228
+ class Rwkv6MoeFeedForward(nn.Module):
229
+ def __init__(self, config, layer_id=0):
230
+ super().__init__()
231
+ self.config = config
232
+ self.layer_id = layer_id
233
+ hidden_size = config.hidden_size
234
+
235
+ self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
236
+ self.time_maa_k = nn.Parameter(torch.empty(1, 1, hidden_size))
237
+ self.time_maa_r = nn.Parameter(torch.empty(1, 1, hidden_size))
238
+
239
+ self.receptance = nn.Linear(hidden_size, hidden_size, bias=False)
240
+ self.shared_expert = Rwkv6MoeFeedForwardExpert(config, layer_id) if config.shared_expert else None
241
+ self.experts = nn.ModuleList([Rwkv6MoeFeedForwardExpert(config, layer_id) for _ in range(config.num_experts)])
242
+
243
+ primes = [5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443]
244
+ self.hash_prime = primes[layer_id]
245
+
246
+ def forward(self, hidden, input_ids:torch.LongTensor, state=None):
247
+ if hidden.size(1) == 1 and state is not None:
248
+ shifted = state[2][:, :, self.layer_id]
249
+ else:
250
+ shifted = self.time_shift(hidden)
251
+ if state is not None:
252
+ shifted[:, 0] = state[2][:, :, self.layer_id]
253
+ if len(shifted.size()) == 2:
254
+ shifted = shifted.unsqueeze(1)
255
+
256
+ delta_hidden_to_shifted = shifted - hidden
257
+ hidden_with_tokenshift = hidden + delta_hidden_to_shifted * self.time_maa_k
258
+ receptance = hidden + delta_hidden_to_shifted * self.time_maa_r
259
+
260
+ receptance = torch.sigmoid(self.receptance(receptance))
261
+
262
+ # flatten batch and sequence dimensions of input_ids and hidden_with_tokenshift
263
+ flat_input_ids = input_ids.flatten()
264
+ flat_hidden_with_tokenshift = hidden_with_tokenshift.reshape(-1, hidden_with_tokenshift.size(-1))
265
+
266
+ if self.shared_expert is not None:
267
+ flat_value = self.shared_expert(flat_hidden_with_tokenshift)
268
+ else:
269
+ flat_value = torch.zeros_like(flat_hidden_with_tokenshift)
270
+
271
+ # add in contributions from experts
272
+
273
+ # find the expert index for each flat index (flattened batchseq index)
274
+ expert_by_flat_idx = (flat_input_ids * self.hash_prime) % self.config.num_experts
275
+ # one hot mask of expert choices by flat batchseq index
276
+ expert_mask = torch.nn.functional.one_hot(expert_by_flat_idx, num_classes=self.config.num_experts).mT # expert_idx, flat_idx
277
+ # go through each expert and add in their contributions
278
+ for expert_idx in range(self.config.num_experts):
279
+ expert = self.experts[expert_idx]
280
+ # get a list of flat batchseq indices for the current expert
281
+ flat_indices_for_expert = expert_mask[expert_idx].nonzero().flatten()
282
+ if flat_indices_for_expert.size(-1) > 0:
283
+ # select out the inputs from this expert's flat batchseq locations into a compact tensor
284
+ expert_hidden_with_tokenshift = flat_hidden_with_tokenshift[flat_indices_for_expert]
285
+ # run the compact tensor through the expert
286
+ compact_expert_output = expert(expert_hidden_with_tokenshift)
287
+ # add the expert's results to the appropriate original locations
288
+ flat_value.index_add_(dim=0, index=flat_indices_for_expert, source=compact_expert_output)
289
+
290
+ value = flat_value.view(hidden.size(0), hidden.size(1), hidden.size(2))
291
+
292
+ if state is not None:
293
+ state[2][:, :, self.layer_id] = hidden[:, -1]
294
+
295
+ return receptance * value, state
296
+
297
+
298
+ class Rwkv6MoeBlock(nn.Module):
299
+ def __init__(self, config, layer_id):
300
+ super().__init__()
301
+ self.config = config
302
+ self.layer_id = layer_id
303
+
304
+ if layer_id == 0:
305
+ self.pre_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
306
+
307
+ self.ln1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
308
+ self.ln2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
309
+
310
+ self.attention = Rwkv6MoeSelfAttention(config, layer_id)
311
+ self.feed_forward = Rwkv6MoeFeedForward(config, layer_id)
312
+
313
+ def forward(self, hidden, input_ids:torch.LongTensor, state=None, use_cache=False, output_attentions=False, seq_mode=True):
314
+ if self.layer_id == 0:
315
+ hidden = self.pre_ln(hidden)
316
+ attention, state = self.attention(self.ln1(hidden), state=state, use_cache=use_cache, seq_mode=seq_mode)
317
+ hidden = hidden + attention
318
+
319
+ feed_forward, state = self.feed_forward(self.ln2(hidden), input_ids=input_ids, state=state)
320
+ hidden = hidden + feed_forward
321
+
322
+ outputs = (hidden, state)
323
+ if output_attentions:
324
+ outputs += (attention,)
325
+ else:
326
+ outputs += (None,)
327
+
328
+ return outputs
329
+
330
+
331
+ class Rwkv6MoePreTrainedModel(PreTrainedModel):
332
+ """
333
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
334
+ models.
335
+ """
336
+
337
+ config_class = Rwkv6MoeConfig
338
+ base_model_prefix = "rwkv6moe"
339
+ _no_split_modules = ["Rwkv6MoeBlock"]
340
+ _keep_in_fp32_modules = ["time_decay", "time_first"]
341
+ supports_gradient_checkpointing = True
342
+
343
+ def _init_weights(self, module):
344
+ """Initialize the weights."""
345
+ if isinstance(module, Rwkv6MoeSelfAttention):
346
+ layer_id = module.layer_id
347
+ num_hidden_layers = module.config.num_hidden_layers
348
+ hidden_size = module.config.hidden_size
349
+ attention_hidden_size = module.attention_hidden_size
350
+ head_size = module.config.head_size
351
+ num_heads = attention_hidden_size // head_size
352
+
353
+ ratio_0_to_1 = layer_id / (num_hidden_layers - 1) # 0 to 1
354
+ ratio_1_to_almost0 = 1.0 - (layer_id / num_hidden_layers) # 1 to ~0
355
+
356
+ time_weight = torch.tensor(
357
+ [i / hidden_size for i in range(hidden_size)],
358
+ dtype=module.time_maa_k.dtype,
359
+ device=module.time_maa_k.device,
360
+ )
361
+ time_weight = time_weight[None, None, :]
362
+
363
+ decay_speed = [
364
+ -6.0 + 5.0 * (h / (attention_hidden_size - 1)) ** (0.7 + 1.3 * ratio_0_to_1)
365
+ for h in range(attention_hidden_size)
366
+ ]
367
+ decay_speed = torch.tensor(decay_speed, dtype=module.time_decay.dtype, device=module.time_decay.device)
368
+ tmp = torch.tensor(
369
+ [
370
+ (1.0 - (i / (attention_hidden_size - 1.0))) * ratio_0_to_1 + 0.1 * ((i + 1) % 3 - 1)
371
+ for i in range(attention_hidden_size)
372
+ ],
373
+ dtype=module.time_faaaa.dtype,
374
+ device=module.time_faaaa.device,
375
+ )
376
+
377
+ with torch.no_grad():
378
+ module.time_maa_x.data = 1.0 - torch.pow(time_weight, ratio_1_to_almost0)
379
+ module.time_maa_w.data = 1.0 - torch.pow(time_weight, ratio_1_to_almost0)
380
+ module.time_maa_k.data = 1.0 - torch.pow(time_weight, ratio_1_to_almost0)
381
+ module.time_maa_v.data = 1.0 - (torch.pow(time_weight, ratio_1_to_almost0) + 0.3 * ratio_0_to_1)
382
+ module.time_maa_r.data = 1.0 - torch.pow(time_weight, 0.5 * ratio_1_to_almost0)
383
+ module.time_maa_g.data = 1.0 - torch.pow(time_weight, 0.5 * ratio_1_to_almost0)
384
+
385
+ TIME_MIX_EXTRA_DIM = 32 # generate TIME_MIX for w,k,v,r,g
386
+ module.time_maa_w1.data = torch.zeros(hidden_size, TIME_MIX_EXTRA_DIM*5, dtype=module.time_maa_w1.dtype, device=module.time_maa_w1.device).uniform_(-1e-4, 1e-4)
387
+ module.time_maa_w2.data = torch.zeros(5, TIME_MIX_EXTRA_DIM, hidden_size, dtype=module.time_maa_w2.dtype, device=module.time_maa_w2.device).uniform_(-1e-4, 1e-4)
388
+
389
+ TIME_DECAY_EXTRA_DIM = 64
390
+ module.time_decay_w1.data = torch.zeros(hidden_size, TIME_DECAY_EXTRA_DIM, dtype=module.time_decay_w1.dtype, device=module.time_decay_w1.device).uniform_(-1e-4, 1e-4)
391
+ module.time_decay_w2.data = torch.zeros(TIME_DECAY_EXTRA_DIM, attention_hidden_size, dtype=module.time_decay_w2.dtype, device=module.time_decay_w2.device).uniform_(-1e-4, 1e-4)
392
+
393
+ module.time_decay.data = decay_speed.reshape(num_heads, head_size)
394
+ module.time_faaaa.data = tmp.reshape(num_heads, head_size)
395
+
396
+ elif isinstance(module, Rwkv6MoeFeedForward):
397
+ layer_id = module.layer_id
398
+ num_hidden_layers = module.config.num_hidden_layers
399
+ hidden_size = module.config.hidden_size
400
+
401
+ ratio_1_to_almost0 = 1.0 - (layer_id / num_hidden_layers) # 1 to ~0
402
+
403
+ time_weight = torch.tensor(
404
+ [i / hidden_size for i in range(hidden_size)],
405
+ dtype=module.time_maa_k.dtype,
406
+ device=module.time_maa_k.device,
407
+ )
408
+ time_weight = time_weight[None, None, :]
409
+
410
+ with torch.no_grad():
411
+ module.time_maa_k.data = 1.0 - torch.pow(time_weight, ratio_1_to_almost0)
412
+ module.time_maa_r.data = 1.0 - torch.pow(time_weight, ratio_1_to_almost0)
413
+
414
+
415
+ @dataclass
416
+ class Rwkv6MoeOutput(ModelOutput):
417
+ """
418
+ Class for the RWKV model outputs.
419
+
420
+ Args:
421
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
422
+ Sequence of hidden-states at the output of the last layer of the model.
423
+ state (list of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`):
424
+ The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
425
+ avoid providing the old `input_ids`.
426
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
427
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
428
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of
429
+ the model at the output of each layer plus the optional initial embedding outputs.
430
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
431
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
432
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
433
+ the self-attention heads.
434
+ """
435
+
436
+ last_hidden_state: torch.FloatTensor = None
437
+ state: Optional[List[torch.FloatTensor]] = None
438
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
439
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
440
+
441
+
442
+ @dataclass
443
+ class Rwkv6MoeCausalLMOutput(ModelOutput):
444
+ """
445
+ Base class for causal language model (or autoregressive) outputs.
446
+
447
+ Args:
448
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
449
+ Language modeling loss (for next-token prediction).
450
+ logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
451
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
452
+ state (list of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`):
453
+ The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
454
+ avoid providing the old `input_ids`.
455
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
456
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
457
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of
458
+ the model at the output of each layer plus the optional initial embedding outputs.
459
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
460
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
461
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
462
+ the self-attention heads.
463
+ """
464
+
465
+ loss: Optional[torch.FloatTensor] = None
466
+ logits: torch.FloatTensor = None
467
+ state: Optional[List[torch.FloatTensor]] = None
468
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
469
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
470
+
471
+
472
+ RWKV6MOE_START_DOCSTRING = r"""
473
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
474
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
475
+ etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module)
476
+ subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
477
+ general usage and behavior.
478
+
479
+ Parameters:
480
+ config ([`Rwkv6MoeConfig`]): Model configuration class with all the parameters of the model.
481
+ Initializing with a config file does not load the weights associated with the model, only the
482
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
483
+ """
484
+
485
+ RWKV6MOE_INPUTS_DOCSTRING = r"""
486
+ Args:
487
+ input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
488
+ `input_ids_length` = `sequence_length` if `past_key_values` is `None` else
489
+ `past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
490
+ sequence tokens in the vocabulary. If `past_key_values` is used, only `input_ids` that do not have their
491
+ past calculated should be passed as `input_ids`. Indices can be obtained using [`AutoTokenizer`]. See
492
+ [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
493
+ IDs?](../glossary#input-ids)
494
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
495
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
496
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
497
+ model's internal embedding lookup matrix.
498
+ state (tuple of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`, *optional*):
499
+ If passed along, the model uses the previous state in all the blocks (which will give the output for the
500
+ `input_ids` provided as if the model add `state_input_ids + input_ids` as context).
501
+ use_cache (`bool`, *optional*):
502
+ If set to `True`, the last state is returned and can be used to quickly generate the next logits.
503
+ output_attentions (`bool`, *optional*):
504
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
505
+ tensors for more detail.
506
+ output_hidden_states (`bool`, *optional*):
507
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
508
+ more detail.
509
+ return_dict (`bool`, *optional*):
510
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
511
+ """
512
+
513
+
514
+ @add_start_docstrings(
515
+ "The bare RWKV6Moe Model transformer outputting raw hidden-states without any specific head on top.",
516
+ RWKV6MOE_START_DOCSTRING,
517
+ )
518
+ class Rwkv6MoeModel(Rwkv6MoePreTrainedModel):
519
+ def __init__(self, config):
520
+ super().__init__(config)
521
+
522
+ self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
523
+ self.blocks = nn.ModuleList([Rwkv6MoeBlock(config, layer_id=idx) for idx in range(config.num_hidden_layers)])
524
+ self.ln_out = nn.LayerNorm(config.hidden_size)
525
+
526
+ self.layers_are_rescaled = False
527
+ self.gradient_checkpointing = False
528
+
529
+ # Initialize weights and apply final processing
530
+ self.post_init()
531
+
532
+ def get_input_embeddings(self):
533
+ return self.embeddings
534
+
535
+ def set_input_embeddings(self, new_embeddings):
536
+ self.embeddings = new_embeddings
537
+
538
+ @add_start_docstrings_to_model_forward(RWKV6MOE_INPUTS_DOCSTRING)
539
+ @add_code_sample_docstrings(
540
+ checkpoint=_CHECKPOINT_FOR_DOC,
541
+ output_type=Rwkv6MoeOutput,
542
+ config_class=_CONFIG_FOR_DOC,
543
+ )
544
+ def forward(
545
+ self,
546
+ input_ids: Optional[torch.LongTensor] = None,
547
+ attention_mask: Optional[torch.LongTensor] = None, # noqa
548
+ inputs_embeds: Optional[torch.FloatTensor] = None,
549
+ state: Optional[List[torch.FloatTensor]] = None,
550
+ use_cache: Optional[bool] = None,
551
+ output_attentions: Optional[bool] = None,
552
+ output_hidden_states: Optional[bool] = None,
553
+ return_dict: Optional[bool] = None,
554
+ ) -> Union[Tuple, Rwkv6MoeOutput]:
555
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
556
+ output_hidden_states = (
557
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
558
+ )
559
+ # FIXME - training is supportable with the CUDA code
560
+ # rwkv6 only support inference in huggingface.
561
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
562
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
563
+
564
+ if self.training == self.layers_are_rescaled and (
565
+ self.embeddings.weight.dtype == torch.float16 or self.embeddings.weight.dtype == torch.bfloat16
566
+ ):
567
+ self._rescale_layers()
568
+
569
+ if input_ids is None:
570
+ raise ValueError("RWKV-MoE requires that you specify input_ids, as it uses these to select experts")
571
+ if input_ids is not None and inputs_embeds is not None:
572
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
573
+ elif input_ids is None and inputs_embeds is None:
574
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
575
+
576
+ if inputs_embeds is None:
577
+ inputs_embeds = self.embeddings(input_ids)
578
+
579
+ if state is None:
580
+ state = []
581
+ head_size = self.config.head_size
582
+ num_heads = self.config.attention_hidden_size // head_size
583
+ state_attn_x = torch.zeros(
584
+ (inputs_embeds.size(0), self.config.hidden_size, self.config.num_hidden_layers),
585
+ dtype=inputs_embeds.dtype,
586
+ requires_grad=False,
587
+ device=inputs_embeds.device,
588
+ ).contiguous()
589
+ state_attn_kv = torch.zeros(
590
+ (
591
+ inputs_embeds.size(0),
592
+ num_heads,
593
+ head_size,
594
+ head_size,
595
+ self.config.num_hidden_layers,
596
+ ),
597
+ dtype=torch.float32,
598
+ requires_grad=False,
599
+ device=inputs_embeds.device,
600
+ ).contiguous()
601
+ state_ffn_x = torch.zeros(
602
+ (inputs_embeds.size(0), self.config.hidden_size, self.config.num_hidden_layers),
603
+ dtype=inputs_embeds.dtype,
604
+ requires_grad=False,
605
+ device=inputs_embeds.device,
606
+ ).contiguous()
607
+ state.append(state_attn_x)
608
+ state.append(state_attn_kv)
609
+ state.append(state_ffn_x)
610
+
611
+ seq_mode = inputs_embeds.shape[1] > 1
612
+ hidden_states = inputs_embeds
613
+
614
+ all_self_attentions = () if output_attentions else None
615
+ all_hidden_states = () if output_hidden_states else None
616
+ for idx, block in enumerate(self.blocks):
617
+ hidden_states, state, attentions = block(
618
+ hidden_states, input_ids=input_ids, state=state, use_cache=use_cache, output_attentions=output_attentions, seq_mode=seq_mode
619
+ )
620
+ if (
621
+ self.layers_are_rescaled
622
+ and self.config.rescale_every > 0
623
+ and (idx + 1) % self.config.rescale_every == 0
624
+ ):
625
+ hidden_states = hidden_states / 2
626
+
627
+ if output_hidden_states:
628
+ all_hidden_states = all_hidden_states + (hidden_states,)
629
+
630
+ if output_attentions:
631
+ all_self_attentions = all_self_attentions + (attentions,)
632
+
633
+ hidden_states = self.ln_out(hidden_states)
634
+
635
+ if output_hidden_states:
636
+ all_hidden_states = all_hidden_states + (hidden_states,)
637
+
638
+ if not return_dict:
639
+ return (hidden_states, state, all_hidden_states, all_self_attentions)
640
+
641
+ return Rwkv6MoeOutput(
642
+ last_hidden_state=hidden_states,
643
+ state=state,
644
+ hidden_states=all_hidden_states, # None
645
+ attentions=all_self_attentions, # None
646
+ )
647
+
648
+ def _rescale_layers(self):
649
+ # Layers should be rescaled for inference only.
650
+ if self.layers_are_rescaled == (not self.training):
651
+ return
652
+ if self.config.rescale_every > 0:
653
+ with torch.no_grad():
654
+ for block_id, block in enumerate(self.blocks):
655
+ if self.training:
656
+ block.attention.output.weight.mul_(2 ** int(block_id // self.config.rescale_every))
657
+ block.feed_forward.shared_expert.value.weight.mul_(2 ** int(block_id // self.config.rescale_every))
658
+ for expert in block.feed_forward.experts:
659
+ expert.value.weight.mul_(2 ** int(block_id // self.config.rescale_every))
660
+ else:
661
+ # Deal with quantization statistics
662
+ if hasattr(block.attention.output.weight, "SCB"):
663
+ block.attention.output.weight.SCB.div_(2 ** int(block_id // self.config.rescale_every))
664
+ block.feed_forward.shared_expert.value.weight.SCB.div_(2 ** int(block_id // self.config.rescale_every))
665
+ for expert in block.feed_forward.experts:
666
+ expert.value.weight.SCB.div_(2 ** int(block_id // self.config.rescale_every))
667
+ elif hasattr(block.attention.output.weight, "quant_state"):
668
+ self._bnb_4bit_dequantize_and_rescale(block.attention.output, block_id)
669
+ self._bnb_4bit_dequantize_and_rescale(block.feed_forward.shared_expert.value, block_id)
670
+ for expert in block.feed_forward.experts:
671
+ self._bnb_4bit_dequantize_and_rescale(expert.value, block_id)
672
+ else:
673
+ block.attention.output.weight.div_(2 ** int(block_id // self.config.rescale_every))
674
+ block.feed_forward.shared_expert.value.weight.div_(2 ** int(block_id // self.config.rescale_every))
675
+ for expert in block.feed_forward.experts:
676
+ expert.value.weight.div_(2 ** int(block_id // self.config.rescale_every))
677
+
678
+ self.layers_are_rescaled = not self.training
679
+
680
+ def _bnb_4bit_dequantize_and_rescale(self, target_layer, block_id):
681
+ r"""
682
+ Perform the dequantization and rescaling of the weights of a given layer. After that operation the layer will
683
+ be quantized again.
684
+ """
685
+ if not is_bitsandbytes_available():
686
+ raise ImportError("Please install bitsandbytes to use this method.")
687
+ import bitsandbytes as bnb
688
+
689
+ dequant_weights = bnb.functional.dequantize_4bit(target_layer.weight.data, target_layer.weight.quant_state)
690
+
691
+ dequant_weights.div_(2 ** int(block_id // self.config.rescale_every))
692
+
693
+ # re-quantize the model:
694
+ # we need to put it first on CPU then back to the device
695
+ # this will create an overhead :/
696
+ # We set requires_grad=False as we cannot compute gradients on top of 4bit parameters anyway and to avoid
697
+ # bugs with bnb
698
+ quant_weight = bnb.nn.Params4bit(dequant_weights.to("cpu"), requires_grad=False).to(dequant_weights.device)
699
+ setattr(target_layer, "weight", quant_weight)
700
+
701
+
702
+ # copied from HuggingFace https://github.com/huggingface/transformers/blob/main/src/transformers/models/rwkv/modeling_rwkv.py
703
+ @add_start_docstrings(
704
+ """
705
+ The RWKV6Moe Model transformer with a language modeling head on top (linear layer with weights tied to the input
706
+ embeddings).
707
+ """,
708
+ RWKV6MOE_START_DOCSTRING,
709
+ )
710
+ class Rwkv6MoeForCausalLM(Rwkv6MoePreTrainedModel):
711
+ _tied_weights_keys = ["head.weight"]
712
+
713
+ def __init__(self, config):
714
+ super().__init__(config)
715
+ self.model = Rwkv6MoeModel(config)
716
+ self.head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
717
+
718
+ # Initialize weights and apply final processing
719
+ self.post_init()
720
+
721
+ def get_output_embeddings(self):
722
+ return self.head
723
+
724
+ def set_output_embeddings(self, new_embeddings):
725
+ self.head = new_embeddings
726
+
727
+ def prepare_inputs_for_generation(self, input_ids, state=None, inputs_embeds=None, **kwargs):
728
+ # only last token for inputs_ids if the state is passed along.
729
+ if state is not None:
730
+ input_ids = input_ids[:, -1].unsqueeze(-1)
731
+
732
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
733
+ if inputs_embeds is not None and state is None:
734
+ model_inputs = {"inputs_embeds": inputs_embeds}
735
+ else:
736
+ model_inputs = {"input_ids": input_ids}
737
+
738
+ model_inputs["state"] = state
739
+ return model_inputs
740
+
741
+ @add_start_docstrings_to_model_forward(RWKV6MOE_INPUTS_DOCSTRING)
742
+ @add_code_sample_docstrings(
743
+ checkpoint=_CHECKPOINT_FOR_DOC,
744
+ output_type=Rwkv6MoeCausalLMOutput,
745
+ config_class=_CONFIG_FOR_DOC,
746
+ )
747
+ def forward(
748
+ self,
749
+ input_ids: Optional[torch.LongTensor] = None,
750
+ attention_mask: Optional[torch.LongTensor] = None,
751
+ inputs_embeds: Optional[torch.FloatTensor] = None,
752
+ state: Optional[List[torch.FloatTensor]] = None,
753
+ labels: Optional[torch.LongTensor] = None,
754
+ use_cache: Optional[bool] = None,
755
+ output_attentions: Optional[bool] = None,
756
+ output_hidden_states: Optional[bool] = None,
757
+ return_dict: Optional[bool] = None,
758
+ ) -> Union[Tuple, Rwkv6MoeCausalLMOutput]:
759
+ r"""
760
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
761
+ Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
762
+ `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
763
+ are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
764
+ """
765
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
766
+
767
+ outputs = self.model(
768
+ input_ids,
769
+ inputs_embeds=inputs_embeds,
770
+ state=state,
771
+ use_cache=use_cache,
772
+ output_attentions=output_attentions,
773
+ output_hidden_states=output_hidden_states,
774
+ return_dict=return_dict,
775
+ )
776
+ hidden_states = outputs[0]
777
+
778
+ logits = self.head(hidden_states)
779
+
780
+ loss = None
781
+ if labels is not None:
782
+ # move labels to correct device to enable model parallelism
783
+ labels = labels.to(logits.device)
784
+ # Shift so that tokens < n predict n
785
+ shift_logits = logits[..., :-1, :].contiguous()
786
+ shift_labels = labels[..., 1:].contiguous()
787
+ # Flatten the tokens
788
+ loss_fct = CrossEntropyLoss()
789
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
790
+
791
+ if not return_dict:
792
+ output = (logits,) + outputs[1:]
793
+ return ((loss,) + output) if loss is not None else output
794
+
795
+ return Rwkv6MoeCausalLMOutput(
796
+ loss=loss,
797
+ logits=logits,
798
+ state=outputs.state,
799
+ hidden_states=outputs.hidden_states,
800
+ attentions=outputs.attentions,
801
+ )
rwkv_vocab_v20230424.txt ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "eos_token": "<s>",
4
+ "unk_token": "<s>"
5
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name_or_path": "rwkv-6-tokenizer",
3
+ "add_prefix_space": false,
4
+ "tokenizer_class": "Rwkv6Tokenizer",
5
+ "use_fast": false,
6
+ "auto_map": {
7
+ "AutoTokenizer": [
8
+ "hf_rwkv_tokenizer.Rwkv6Tokenizer",
9
+ null
10
+ ]
11
+ }
12
+ }