rbojja's picture
Update README.md
717ad25 verified
|
raw
history blame
12.2 kB
metadata
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
widget:
  - text: Mujhe apne galtiyon ka ehsaas hai aur main unke liye maafi chahta hoon.
  - text: >-
      Mujhe yeh step samajhne mein dikkat ho rahi hai, kya aap madad kar sakte
      hain?
  - text: Mujhe abhi tak kuch update kyun nahi mila, yeh bahut frustrating hai.
  - text: Is app ka loading time mujhe thoda zyada lagta hai.
  - text: Kya aap mujhe is event ki timing bata sakte hain?
metrics:
  - accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: MoritzLaurer/mDeBERTa-v3-base-mnli-xnli
model-index:
  - name: SetFit with MoritzLaurer/mDeBERTa-v3-base-mnli-xnli
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: accuracy
            value: 0.32
            name: Accuracy

SetFit with MoritzLaurer/mDeBERTa-v3-base-mnli-xnli

This is a SetFit model that can be used for Text Classification. This SetFit model uses MoritzLaurer/mDeBERTa-v3-base-mnli-xnli as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
4
  • 'Yeh rahin wo steps jisse aap apni payment kar sakte hain.'
  • 'Kya aap mujhe yeh batane ka tarika thoda aasan kar sakte hain?'
  • 'Is option ke madhyam se aap apni queries kaise solve kar sakte hain, jaan lijiye.'
16
  • 'Aapke feedback ko humne dhyan mein rakha hai.'
  • 'Yeh galti humare systems ki wajah se hui hai.'
  • 'Mujhe is samasya ko suljhane mein zyada samay lena nahi chahiye tha.'
8
  • 'Main aapko pareshan karne ke liye maafi chahta hoon.'
  • 'Humein is samasya ke liye maafi chahiye.'
  • 'Mere kaam se agar aapko takleef hui ho, toh mujhe maaf kar dijiye.'
13
  • 'Mujhe yeh clarify karne ki zarurat hai ki agla step kya hai?'
  • 'Mujhe pata karna hai ki maine jo complaint ki thi uska kya hua.'
  • 'Mujhe bataye ki pehle kitne payments honge iss plan ke liye.'
15
  • 'Yeh features sahi hai, lekin kuch aur additional functionalities honi chahiye.'
  • 'Product ke size ki jankari hamesha saaf honi chahiye.'
  • 'Main chahunga ki online form aur simple ho.'
12
  • 'Mujhe product ke sath kuch samasya hai.'
  • 'Mera phone charging nahi ho raha.'
  • 'Mujhe courier service mein dikkat hai, report karna hai.'
11
  • 'Mujhe samajh nahi aa raha, is offer mein koi chhupi shartein toh nahi hai?'
  • 'Kis tarah se main feedback de sakta hoon?'
  • 'Kya koi referral program hai jo mujhe join karna chahiye?'
2
  • 'Item ke sath saathi accessories nahi mil rahe hain.'
  • 'Aap logon ne jo samay liya, wo bilkul zyada tha.'
  • 'Meri order delivery mein bahut der ho gayi hai.'
18
  • 'Mujhe yeh bilkul pasand nahi hai ki meri baat ignore ki gayi.'
  • 'Kam ke liye mera dosto ka support bahut sukhdayak hai.'
  • 'Aaj ka din kaafi udaas beete raha hai.'
14
  • 'Kya main kal ki delivery ko agle hafte reschedule kar sakta/sakti hoon?'
  • 'Mujhe refund ke liye kya documents chahiye?'
  • 'Kya main appointment ko dobara set kar sakta/sakti hoon?'
7
  • 'Main aapko dhanyavad dena chahta hoon, aapne meri madad ki.'
  • 'Aapne jo kiya, uske liye aapko sabse pehle prashansha milni chahiye.'
  • 'Aapka samay dene ke liye abhaar.'
3
  • 'Mujhe kisi event ke tickets ka status check karna hai.'
  • 'Kya aap mujhe customer support number de sakte hain?'
  • 'Main apne account ka balance kaise check kar sakta/sakti hoon?'
5
  • 'Alvida, tumhara din acha rahe!'
  • 'Hello! Aaj aap kaise hain?'
  • 'Swagat hai! Kya main aapki kuch madad kar sakta hoon?'
0
  • 'Mujhe kuch samajh nahi aa raha hai, kya mujhe thoda aur samjha sakte hain?'
  • 'Agar main aisa karoon, to kya kuch badal jaayega? Main sure nahi hoon.'
  • 'Yeh product ki warranty ki details clear nahi hain.'
6
  • 'Chalo, alvida bolte hain!'
  • 'Phir se baat karte hain!'
  • 'Adieu, aapka din shubh ho!'
17
  • 'Mere account mein login karne mein dikkat aa rahi hai, madad karein.'
  • 'Mujhe apne account mein login karne mein madad chahiye.'
  • 'Kya aap mujhe terms and conditions ke details de sakte hain?'
10
  • 'Main aapki baat se sehmat hoon.'
  • 'Mujhe yeh batayein ki meri booking sahi hai na?'
9
  • 'Kya aap mujhe yeh concept aur clear kar sakte hain?'
  • 'Mujhe yeh samajhne mein dikkat ho rahi hai, kya aap vyakhya de sakte hain?'
1
  • 'Aaj dosto ke sath waqt bitana bahut acha laga.'
  • 'Aaj baarish me bheegna bahut refreshing tha, mujhe yeh moment pasand aaya.'
  • 'Aapka support bahut madadgar raha.'

Evaluation

Metrics

Label Accuracy
all 0.32

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("rbojja/FT-mDeBERTa-v3-base-mnli-xnli")
# Run inference
preds = model("Kya aap mujhe is event ki timing bata sakte hain?")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 3 9.76 15
Label Training Sample Count
0 6
1 3
2 3
3 5
4 7
5 3
6 6
7 8
8 6
9 2
10 2
11 5
12 6
13 5
14 9
15 9
16 9
17 3
18 3

Training Hyperparameters

  • batch_size: (16, 2)
  • num_epochs: (1, 16)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0017 1 0.2335 -
0.0853 50 0.2514 -
0.1706 100 0.1619 -
0.2560 150 0.1124 -
0.3413 200 0.078 -
0.4266 250 0.0623 -
0.5119 300 0.0576 -
0.5973 350 0.0421 -
0.6826 400 0.0391 -
0.7679 450 0.0386 -
0.8532 500 0.0302 -
0.9386 550 0.0245 -

Framework Versions

  • Python: 3.10.16
  • SetFit: 1.1.1
  • Sentence Transformers: 3.3.1
  • Transformers: 4.46.3
  • PyTorch: 2.5.1+cpu
  • Datasets: 3.2.0
  • Tokenizers: 0.20.3

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}