|
--- |
|
language: |
|
- code |
|
|
|
tags: |
|
- question-answering |
|
- knowledge-graph |
|
--- |
|
|
|
# SPBERT MLM+WSO (Initialized) |
|
## Introduction |
|
Paper: [SPBERT: An Efficient Pre-training BERT on SPARQL Queries for Question Answering over Knowledge Graphs](https://arxiv.org/abs/2106.09997) |
|
Authors: _Hieu Tran, Long Phan, James Anibal, Binh T. Nguyen, Truong-Son Nguyen_ |
|
## How to use |
|
For more details, do check out [our Github repo](https://github.com/heraclex12/NLP2SPARQL). |
|
Here is an example in Pytorch: |
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
tokenizer = AutoTokenizer.from_pretrained('razent/spbert-mlm-wso-base') |
|
model = AutoModel.from_pretrained("razent/spbert-mlm-wso-base") |
|
text = "select * where brack_open var_a var_b var_c sep_dot brack_close" |
|
encoded_input = tokenizer(text, return_tensors='pt') |
|
output = model(**encoded_input) |
|
``` |
|
or Tensorflow |
|
```python |
|
from transformers import AutoTokenizer, TFAutoModel |
|
tokenizer = AutoTokenizer.from_pretrained('razent/spbert-mlm-wso-base') |
|
model = TFAutoModel.from_pretrained("razent/spbert-mlm-wso-base") |
|
text = "select * where brack_open var_a var_b var_c sep_dot brack_close" |
|
encoded_input = tokenizer(text, return_tensors='tf') |
|
output = model(encoded_input) |
|
``` |
|
## Citation |
|
``` |
|
@misc{tran2021spbert, |
|
title={SPBERT: An Efficient Pre-training BERT on SPARQL Queries for Question Answering over Knowledge Graphs}, |
|
author={Hieu Tran and Long Phan and James Anibal and Binh T. Nguyen and Truong-Son Nguyen}, |
|
year={2021}, |
|
eprint={2106.09997}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |