|
--- |
|
language: code |
|
datasets: |
|
- code_search_net |
|
|
|
--- |
|
|
|
# CoText (1-CC) |
|
|
|
## Introduction |
|
Paper: [CoTexT: Multi-task Learning with Code-Text Transformer](https://arxiv.org/abs/2105.08645) |
|
|
|
Authors: _Long Phan, Hieu Tran, Daniel Le, Hieu Nguyen, James Anibal, Alec Peltekian, Yanfang Ye_ |
|
|
|
## How to use |
|
|
|
Supported languages: |
|
|
|
```shell |
|
"go" |
|
"java" |
|
"javascript" |
|
"php" |
|
"python" |
|
"ruby" |
|
``` |
|
|
|
For more details, do check out [our Github repo](https://github.com/justinphan3110/CoTexT). |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
​ |
|
tokenizer = AutoTokenizer.from_pretrained("razent/cotext-1-cc") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("razent/cotext-1-cc") |
|
​ |
|
sentence = "def add(a, b): return a + b" |
|
text = "python: " + sentence + " </s>" |
|
|
|
encoding = tokenizer.encode_plus(text, pad_to_max_length=True, return_tensors="pt") |
|
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda") |
|
|
|
outputs = model.generate( |
|
input_ids=input_ids, attention_mask=attention_masks, |
|
max_length=256, |
|
early_stopping=True |
|
) |
|
|
|
for output in outputs: |
|
line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True) |
|
print(line) |
|
``` |
|
|
|
## Citation |
|
``` |
|
@inproceedings{phan-etal-2021-cotext, |
|
title = "{C}o{T}ex{T}: Multi-task Learning with Code-Text Transformer", |
|
author = "Phan, Long and Tran, Hieu and Le, Daniel and Nguyen, Hieu and Annibal, James and Peltekian, Alec and Ye, Yanfang", |
|
booktitle = "Proceedings of the 1st Workshop on Natural Language Processing for Programming (NLP4Prog 2021)", |
|
year = "2021", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2021.nlp4prog-1.5", |
|
doi = "10.18653/v1/2021.nlp4prog-1.5", |
|
pages = "40--47" |
|
} |
|
``` |