ratish/DBERT_CleanDesc_MAKE_v11
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.1889
- Validation Loss: 1.0498
- Train Accuracy: 0.8
- Epoch: 14
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 4620, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Accuracy | Epoch |
---|---|---|---|
2.1852 | 2.0907 | 0.375 | 0 |
1.7165 | 1.7453 | 0.525 | 1 |
1.2878 | 1.4632 | 0.55 | 2 |
0.9851 | 1.2769 | 0.575 | 3 |
0.7653 | 1.1689 | 0.675 | 4 |
0.6014 | 1.1163 | 0.65 | 5 |
0.4997 | 1.0490 | 0.7 | 6 |
0.4344 | 0.9967 | 0.7 | 7 |
0.3263 | 0.9887 | 0.75 | 8 |
0.2837 | 1.0332 | 0.775 | 9 |
0.2291 | 1.0496 | 0.775 | 10 |
0.1994 | 1.0560 | 0.775 | 11 |
0.1736 | 1.1081 | 0.775 | 12 |
0.1589 | 1.0679 | 0.8 | 13 |
0.1889 | 1.0498 | 0.8 | 14 |
Framework versions
- Transformers 4.28.1
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 1
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.