ratish/DBERT_CleanDesc_MAKE_v10
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.3182
- Validation Loss: 0.8903
- Train Accuracy: 0.75
- Epoch: 9
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3090, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Accuracy | Epoch |
---|---|---|---|
2.2603 | 2.0505 | 0.45 | 0 |
1.7907 | 1.6987 | 0.475 | 1 |
1.3820 | 1.4044 | 0.6 | 2 |
1.0496 | 1.2057 | 0.6 | 3 |
0.8393 | 1.0784 | 0.725 | 4 |
0.6652 | 0.9779 | 0.725 | 5 |
0.5508 | 0.9018 | 0.725 | 6 |
0.4662 | 0.8226 | 0.75 | 7 |
0.3664 | 0.8913 | 0.725 | 8 |
0.3182 | 0.8903 | 0.75 | 9 |
Framework versions
- Transformers 4.28.1
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.