ratish/DBERT_CleanDesc_COLLISION_v10
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.1992
- Validation Loss: 1.6291
- Train Accuracy: 0.6154
- Epoch: 14
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 4575, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Accuracy | Epoch |
---|---|---|---|
1.6309 | 1.7295 | 0.3077 | 0 |
1.4522 | 1.7291 | 0.3077 | 1 |
1.3637 | 1.6656 | 0.3590 | 2 |
1.2159 | 1.5797 | 0.4103 | 3 |
1.0494 | 1.4799 | 0.4872 | 4 |
0.8847 | 1.4288 | 0.5385 | 5 |
0.7629 | 1.4239 | 0.5128 | 6 |
0.6739 | 1.4484 | 0.5128 | 7 |
0.5598 | 1.4533 | 0.6154 | 8 |
0.4606 | 1.4160 | 0.6154 | 9 |
0.3736 | 1.4206 | 0.5897 | 10 |
0.3065 | 1.5229 | 0.5897 | 11 |
0.2580 | 1.6168 | 0.5641 | 12 |
0.2342 | 1.5924 | 0.6410 | 13 |
0.1992 | 1.6291 | 0.6154 | 14 |
Framework versions
- Transformers 4.28.1
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.