ratchy-oak's picture
End of training
f0c536f verified
metadata
license: mit
base_model: google/vivit-b-16x2-kinetics400
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - recall
  - precision
model-index:
  - name: vivit-b-16x2-kinetics400-finetuned-cctv-surveillance
    results: []

vivit-b-16x2-kinetics400-finetuned-cctv-surveillance

This model is a fine-tuned version of google/vivit-b-16x2-kinetics400 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1690
  • Accuracy: 0.9559
  • F1: 0.9430
  • Recall: 0.9559
  • Precision: 0.9333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 4032

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Recall Precision
1.5836 0.12 504 0.3644 0.9206 0.8850 0.9206 0.8799
0.3767 1.12 1008 0.2586 0.9265 0.8994 0.9265 0.8831
0.2063 2.12 1512 0.2190 0.9294 0.9097 0.9294 0.9002
0.4514 3.12 2016 0.2217 0.9529 0.9419 0.9529 0.9380
0.2678 4.12 2520 0.1919 0.9529 0.9419 0.9529 0.9380
0.2311 5.12 3024 0.1797 0.9412 0.9252 0.9412 0.9141
0.5256 6.12 3528 0.1690 0.9559 0.9430 0.9559 0.9333
0.539 7.12 4032 0.1678 0.9529 0.9398 0.9529 0.9297

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2