metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-tiny-en
results: []
whisper-tiny-en
This model is a fine-tuned version of openai/whisper-tiny on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5089
- Wer: 31.4721
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.4475 | 10.53 | 100 | 0.6788 | 20.5584 |
0.0166 | 21.05 | 200 | 0.4262 | 19.2893 |
0.0005 | 31.58 | 300 | 0.4534 | 22.8426 |
0.0003 | 42.11 | 400 | 0.4673 | 68.7817 |
0.0002 | 52.63 | 500 | 0.4806 | 72.5888 |
0.0002 | 63.16 | 600 | 0.4908 | 72.3350 |
0.0001 | 73.68 | 700 | 0.4987 | 31.4721 |
0.0001 | 84.21 | 800 | 0.5045 | 31.4721 |
0.0001 | 94.74 | 900 | 0.5078 | 31.4721 |
0.0001 | 105.26 | 1000 | 0.5089 | 31.4721 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1