|
--- |
|
license: cc-by-nc-sa-4.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- cord-layoutlmv3 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv3-finetuned-cord_100 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: cord-layoutlmv3 |
|
type: cord-layoutlmv3 |
|
config: cord |
|
split: train |
|
args: cord |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8719646799116998 |
|
- name: Recall |
|
type: recall |
|
value: 0.8869760479041916 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8794063079777364 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8790322580645161 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-finetuned-cord_100 |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7215 |
|
- Precision: 0.8720 |
|
- Recall: 0.8870 |
|
- F1: 0.8794 |
|
- Accuracy: 0.8790 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 5 |
|
- eval_batch_size: 5 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 2500 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 12.5 | 250 | 1.0892 | 0.7345 | 0.7867 | 0.7597 | 0.7806 | |
|
| 1.3039 | 25.0 | 500 | 0.7150 | 0.8054 | 0.8428 | 0.8237 | 0.8281 | |
|
| 1.3039 | 37.5 | 750 | 0.6320 | 0.8335 | 0.8615 | 0.8473 | 0.8540 | |
|
| 0.2171 | 50.0 | 1000 | 0.6427 | 0.8651 | 0.8832 | 0.8741 | 0.8722 | |
|
| 0.2171 | 62.5 | 1250 | 0.6640 | 0.8672 | 0.8847 | 0.8759 | 0.8765 | |
|
| 0.0654 | 75.0 | 1500 | 0.6758 | 0.8650 | 0.8825 | 0.8737 | 0.8731 | |
|
| 0.0654 | 87.5 | 1750 | 0.7028 | 0.8684 | 0.8840 | 0.8761 | 0.8765 | |
|
| 0.0338 | 100.0 | 2000 | 0.7252 | 0.8710 | 0.8847 | 0.8778 | 0.8769 | |
|
| 0.0338 | 112.5 | 2250 | 0.7227 | 0.8710 | 0.8847 | 0.8778 | 0.8778 | |
|
| 0.0257 | 125.0 | 2500 | 0.7215 | 0.8720 | 0.8870 | 0.8794 | 0.8790 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.21.2 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|