gpt-2-finetune / README.md
rahul77's picture
Create README.md
22f7524 verified
---
license: apache-2.0
datasets:
- rahul77/rahul-gpt2-1k
language:
- en
base_model: openai-community/gpt2
pipeline_tag: text-generation
library_name: transformers
tags:
- text-generation
- GPT-2
- fine-tuned
- language-model
- transformers
---
# GPT-2 Fine-Tuned Model
This is a fine-tuned version of the GPT-2 model designed for text generation tasks. The model has been fine-tuned to improve its performance on generating coherent and contextually relevant text.
## Model Details
- **Model Name:** GPT-2 Fine-Tuned
- **Base Model:** gpt2
- **Architecture:** GPT2LMHeadModel
- **Tokenization:** Supported
- `pad_token_id`: 50256
- `bos_token_id`: 50256
- `eos_token_id`: 50256
## Supported Tasks
This model supports the following task:
- **Text Generation**
## Configuration
### Model Configuration (config.json)
- **Hidden Size:** 768
- **Number of Layers:** 12
- **Number of Attention Heads:** 12
- **Vocab Size:** 50257
- **Token Type IDs:** Not used
### Generation Configuration (generation_config.json)
- **Sampling Temperature:** 0.7
- **Top-p (nucleus sampling):** 0.9
- **Pad Token ID:** 50256
- **Bos Token ID:** 50256
- **Eos Token ID:** 50256
## Usage
To use this model for text generation via the Hugging Face API, use the following Python code snippet:
```python
import requests
api_url = "/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2Frahul77%2Fgpt-2-finetune%26quot%3B%3C%2Fspan%3E%3C!-- HTML_TAG_END -->
headers = {
"Authorization": "Bearer YOUR_API_TOKEN", # Replace with your Hugging Face API token
"Content-Type": "application/json"
}
data = {
"inputs": "What is a large language model?",
"parameters": {
"max_length": 50
}
}
response = requests.post(api_url, headers=headers, json=data)
if response.status_code == 200:
print(response.json())
else:
print(f"Error: {response.status_code}")
print(response.json())