Sentiment Analysis for TWS Reviews

This model is a fine-tuned version of w11wo/indonesian-roberta-base-sentiment-classifier on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2671
  • Accuracy: 0.9051
  • Precision: 0.9004
  • Recall: 0.9051
  • F1: 0.9007

How to Use

from transformers import pipeline

# Buat pipeline klasifikasi menggunakan model dari Hugging Face Hub
model_name = "ragilbuaj/sentiment-analysis-TWS-reviews"
classifier = pipeline("sentiment-analysis", model=model_name, tokenizer=model_name)

# Gunakan pipeline untuk mengklasifikasikan teks
result = classifier("I love using Hugging Face models!")
print(result)

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.2786 0.9992 589 0.2370 0.9109 0.9053 0.9109 0.9060
0.2205 2.0 1179 0.2626 0.9143 0.9175 0.9143 0.9154
0.1252 2.9992 1768 0.3468 0.9169 0.9160 0.9169 0.9164
0.0869 4.0 2358 0.4000 0.9220 0.9200 0.9220 0.9208
0.0147 4.9958 2945 0.4424 0.9220 0.9180 0.9220 0.9194

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
125M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ragilbuaj/sentiment-analysis-TWS-reviews

Finetuned
(10)
this model

Space using ragilbuaj/sentiment-analysis-TWS-reviews 1