results

This model is a fine-tuned version of w11wo/indonesian-roberta-base-sentiment-classifier on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2671
  • Accuracy: 0.9051
  • Precision: 0.9004
  • Recall: 0.9051
  • F1: 0.9007

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.2786 0.9992 589 0.2370 0.9109 0.9053 0.9109 0.9060
0.2205 2.0 1179 0.2626 0.9143 0.9175 0.9143 0.9154
0.1252 2.9992 1768 0.3468 0.9169 0.9160 0.9169 0.9164
0.0869 4.0 2358 0.4000 0.9220 0.9200 0.9220 0.9208
0.0147 4.9958 2945 0.4424 0.9220 0.9180 0.9220 0.9194

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
125M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for ragilbuaj/results

Finetuned
(10)
this model