finetune-instance-segmentation-ade20k-mini-mask2former-v1
This model is a fine-tuned version of facebook/mask2former-swin-tiny-coco-instance on the qubvel-hf/ade20k-mini dataset. It achieves the following results on the evaluation set:
- Loss: 27.5494
- Map: 0.2315
- Map 50: 0.4495
- Map 75: 0.2185
- Map Small: 0.1535
- Map Medium: 0.6606
- Map Large: 0.8161
- Mar 1: 0.0981
- Mar 10: 0.2576
- Mar 100: 0.3
- Mar Small: 0.2272
- Mar Medium: 0.7189
- Mar Large: 0.8618
- Map Person: 0.1626
- Mar 100 Person: 0.2224
- Map Car: 0.3003
- Mar 100 Car: 0.3776
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 40.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Person | Mar 100 Person | Map Car | Mar 100 Car |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
36.7831 | 1.0 | 100 | 33.2768 | 0.1838 | 0.3677 | 0.174 | 0.1175 | 0.6012 | 0.7974 | 0.0884 | 0.2431 | 0.284 | 0.2104 | 0.7053 | 0.8712 | 0.1175 | 0.2014 | 0.25 | 0.3665 |
30.2324 | 2.0 | 200 | 30.8268 | 0.198 | 0.4007 | 0.1831 | 0.1321 | 0.6183 | 0.8028 | 0.0916 | 0.25 | 0.2885 | 0.2151 | 0.7125 | 0.8354 | 0.1331 | 0.2079 | 0.263 | 0.3691 |
28.4136 | 3.0 | 300 | 29.8261 | 0.2036 | 0.416 | 0.1849 | 0.1337 | 0.6332 | 0.7969 | 0.0934 | 0.2472 | 0.2905 | 0.2169 | 0.7162 | 0.8323 | 0.1381 | 0.2112 | 0.269 | 0.3697 |
27.5659 | 4.0 | 400 | 29.2926 | 0.2101 | 0.4176 | 0.1918 | 0.1371 | 0.6352 | 0.8051 | 0.094 | 0.25 | 0.2884 | 0.2143 | 0.7174 | 0.8354 | 0.1456 | 0.2107 | 0.2745 | 0.3661 |
26.9971 | 5.0 | 500 | 28.8044 | 0.213 | 0.4209 | 0.2016 | 0.1379 | 0.6419 | 0.8094 | 0.093 | 0.2499 | 0.2894 | 0.2148 | 0.7207 | 0.8441 | 0.1475 | 0.2096 | 0.2785 | 0.3692 |
26.42 | 6.0 | 600 | 28.4848 | 0.2196 | 0.4224 | 0.2062 | 0.1426 | 0.647 | 0.8046 | 0.0944 | 0.2523 | 0.2925 | 0.2188 | 0.7196 | 0.8354 | 0.15 | 0.2106 | 0.2892 | 0.3745 |
25.9065 | 7.0 | 700 | 28.2601 | 0.2212 | 0.4261 | 0.207 | 0.1444 | 0.6442 | 0.8049 | 0.0943 | 0.2527 | 0.2902 | 0.2176 | 0.7103 | 0.8323 | 0.153 | 0.2102 | 0.2893 | 0.3703 |
25.6766 | 8.0 | 800 | 28.2581 | 0.2209 | 0.4276 | 0.2076 | 0.1434 | 0.6485 | 0.8201 | 0.0943 | 0.2532 | 0.294 | 0.2197 | 0.7212 | 0.8681 | 0.1532 | 0.2122 | 0.2885 | 0.3758 |
25.3111 | 9.0 | 900 | 27.8623 | 0.2234 | 0.4318 | 0.2163 | 0.1451 | 0.649 | 0.8252 | 0.0951 | 0.2519 | 0.2953 | 0.2212 | 0.721 | 0.8649 | 0.1561 | 0.2148 | 0.2907 | 0.3757 |
24.9424 | 10.0 | 1000 | 27.8925 | 0.2256 | 0.4367 | 0.2129 | 0.1479 | 0.6476 | 0.8314 | 0.0953 | 0.2556 | 0.2973 | 0.2244 | 0.7159 | 0.8712 | 0.1588 | 0.2153 | 0.2923 | 0.3793 |
24.6502 | 11.0 | 1100 | 27.7524 | 0.2254 | 0.441 | 0.2163 | 0.1486 | 0.6468 | 0.8186 | 0.0952 | 0.2556 | 0.2963 | 0.2231 | 0.7167 | 0.8681 | 0.1578 | 0.2153 | 0.2929 | 0.3772 |
24.5278 | 12.0 | 1200 | 27.7122 | 0.2252 | 0.4349 | 0.2167 | 0.1473 | 0.6462 | 0.8237 | 0.0927 | 0.2549 | 0.2979 | 0.2251 | 0.7162 | 0.8649 | 0.1583 | 0.2165 | 0.2921 | 0.3793 |
24.3514 | 13.0 | 1300 | 27.5382 | 0.224 | 0.4345 | 0.2156 | 0.1459 | 0.6554 | 0.8324 | 0.0958 | 0.2554 | 0.2988 | 0.2251 | 0.722 | 0.8806 | 0.1583 | 0.2191 | 0.2897 | 0.3785 |
24.3422 | 14.0 | 1400 | 27.5665 | 0.226 | 0.4374 | 0.2172 | 0.1488 | 0.6505 | 0.8059 | 0.0974 | 0.2551 | 0.2964 | 0.2241 | 0.7141 | 0.8434 | 0.1592 | 0.2158 | 0.2928 | 0.377 |
23.9768 | 15.0 | 1500 | 27.7770 | 0.2281 | 0.4379 | 0.2215 | 0.1499 | 0.6553 | 0.8188 | 0.096 | 0.2553 | 0.2978 | 0.2244 | 0.72 | 0.8632 | 0.1599 | 0.2163 | 0.2963 | 0.3793 |
23.7005 | 16.0 | 1600 | 27.5535 | 0.227 | 0.4392 | 0.2167 | 0.1485 | 0.6509 | 0.8165 | 0.0965 | 0.255 | 0.2972 | 0.2241 | 0.7175 | 0.8656 | 0.1608 | 0.2164 | 0.2932 | 0.3779 |
23.579 | 17.0 | 1700 | 27.4894 | 0.2286 | 0.44 | 0.2209 | 0.1511 | 0.6488 | 0.8152 | 0.097 | 0.2583 | 0.2965 | 0.2243 | 0.7113 | 0.8601 | 0.162 | 0.2144 | 0.2952 | 0.3785 |
23.5004 | 18.0 | 1800 | 27.2188 | 0.2274 | 0.4374 | 0.216 | 0.1498 | 0.6512 | 0.7954 | 0.0962 | 0.2562 | 0.2969 | 0.2251 | 0.712 | 0.8323 | 0.1614 | 0.215 | 0.2933 | 0.3788 |
23.1744 | 19.0 | 1900 | 27.3523 | 0.2286 | 0.4391 | 0.2166 | 0.1494 | 0.6559 | 0.8203 | 0.0962 | 0.2565 | 0.2998 | 0.2274 | 0.7156 | 0.8656 | 0.1602 | 0.2174 | 0.297 | 0.3821 |
23.1884 | 20.0 | 2000 | 27.1185 | 0.2304 | 0.4395 | 0.2204 | 0.1521 | 0.6533 | 0.8004 | 0.0968 | 0.2558 | 0.299 | 0.2273 | 0.7131 | 0.8347 | 0.1611 | 0.217 | 0.2998 | 0.3809 |
22.9136 | 21.0 | 2100 | 27.4296 | 0.2301 | 0.4386 | 0.2197 | 0.1518 | 0.6545 | 0.8185 | 0.0968 | 0.2552 | 0.2979 | 0.2256 | 0.7123 | 0.8712 | 0.1609 | 0.2179 | 0.2992 | 0.3778 |
22.6863 | 22.0 | 2200 | 26.9978 | 0.2309 | 0.444 | 0.2196 | 0.1519 | 0.657 | 0.7955 | 0.0976 | 0.2543 | 0.2982 | 0.2264 | 0.714 | 0.8316 | 0.1624 | 0.2181 | 0.2994 | 0.3784 |
22.7741 | 23.0 | 2300 | 27.0703 | 0.23 | 0.4436 | 0.2183 | 0.1519 | 0.6508 | 0.8029 | 0.0966 | 0.2562 | 0.3001 | 0.229 | 0.7106 | 0.8434 | 0.162 | 0.218 | 0.2979 | 0.3823 |
22.4779 | 24.0 | 2400 | 27.0394 | 0.2335 | 0.4521 | 0.2252 | 0.1552 | 0.656 | 0.8318 | 0.0962 | 0.2598 | 0.3026 | 0.231 | 0.7143 | 0.8601 | 0.1624 | 0.2187 | 0.3045 | 0.3865 |
22.357 | 25.0 | 2500 | 27.1483 | 0.2304 | 0.4456 | 0.2189 | 0.1517 | 0.6586 | 0.8065 | 0.0967 | 0.2554 | 0.2996 | 0.2278 | 0.7143 | 0.8378 | 0.162 | 0.2187 | 0.2989 | 0.3805 |
22.3167 | 26.0 | 2600 | 27.3299 | 0.232 | 0.4438 | 0.2193 | 0.1534 | 0.6572 | 0.8221 | 0.0977 | 0.2564 | 0.2989 | 0.2267 | 0.7134 | 0.8681 | 0.1624 | 0.2176 | 0.3016 | 0.3802 |
22.0958 | 27.0 | 2700 | 27.2571 | 0.232 | 0.4438 | 0.2171 | 0.1535 | 0.6539 | 0.8268 | 0.0974 | 0.2591 | 0.2986 | 0.226 | 0.7153 | 0.8774 | 0.1622 | 0.2185 | 0.3018 | 0.3788 |
22.0902 | 28.0 | 2800 | 27.5156 | 0.2315 | 0.4482 | 0.2177 | 0.1539 | 0.6566 | 0.8265 | 0.0978 | 0.2583 | 0.3021 | 0.23 | 0.716 | 0.8719 | 0.1626 | 0.22 | 0.3004 | 0.3842 |
21.9943 | 29.0 | 2900 | 27.0142 | 0.2288 | 0.4449 | 0.2155 | 0.1511 | 0.6536 | 0.8176 | 0.097 | 0.2557 | 0.2984 | 0.2257 | 0.7169 | 0.8569 | 0.1616 | 0.2202 | 0.2961 | 0.3766 |
21.8843 | 30.0 | 3000 | 27.1738 | 0.2314 | 0.4456 | 0.2192 | 0.1534 | 0.6557 | 0.8263 | 0.0973 | 0.2587 | 0.3026 | 0.23 | 0.7204 | 0.8625 | 0.1629 | 0.2203 | 0.2999 | 0.3848 |
21.8635 | 31.0 | 3100 | 27.0658 | 0.2316 | 0.4461 | 0.22 | 0.1534 | 0.6582 | 0.8166 | 0.0987 | 0.2581 | 0.3013 | 0.2292 | 0.7156 | 0.8625 | 0.163 | 0.2188 | 0.3003 | 0.3838 |
21.473 | 32.0 | 3200 | 27.1354 | 0.2323 | 0.4493 | 0.219 | 0.1545 | 0.6569 | 0.8077 | 0.0966 | 0.259 | 0.3024 | 0.2305 | 0.7172 | 0.8507 | 0.1619 | 0.2182 | 0.3026 | 0.3866 |
21.6879 | 33.0 | 3300 | 26.9810 | 0.2306 | 0.4461 | 0.2178 | 0.1533 | 0.6572 | 0.8095 | 0.0983 | 0.2581 | 0.3004 | 0.2285 | 0.7146 | 0.8476 | 0.1624 | 0.2194 | 0.2989 | 0.3814 |
21.3771 | 34.0 | 3400 | 27.5323 | 0.23 | 0.4476 | 0.2149 | 0.1536 | 0.6593 | 0.8185 | 0.0968 | 0.2577 | 0.2996 | 0.2265 | 0.7204 | 0.8618 | 0.162 | 0.2212 | 0.298 | 0.3781 |
21.2772 | 35.0 | 3500 | 27.1451 | 0.2327 | 0.4465 | 0.2172 | 0.1544 | 0.6641 | 0.8195 | 0.0988 | 0.2597 | 0.3028 | 0.2294 | 0.7262 | 0.8594 | 0.1616 | 0.221 | 0.3038 | 0.3847 |
21.3682 | 36.0 | 3600 | 27.4698 | 0.2334 | 0.4503 | 0.2184 | 0.155 | 0.6608 | 0.8088 | 0.0985 | 0.2574 | 0.3013 | 0.2292 | 0.7164 | 0.8594 | 0.1657 | 0.223 | 0.3011 | 0.3797 |
21.0417 | 37.0 | 3700 | 27.2499 | 0.2354 | 0.4523 | 0.2211 | 0.1569 | 0.6643 | 0.8224 | 0.0998 | 0.2604 | 0.3037 | 0.2307 | 0.7243 | 0.8562 | 0.1654 | 0.2209 | 0.3054 | 0.3865 |
21.0664 | 38.0 | 3800 | 27.3426 | 0.2304 | 0.4437 | 0.2159 | 0.1516 | 0.6568 | 0.8071 | 0.0986 | 0.2566 | 0.2993 | 0.227 | 0.7164 | 0.8451 | 0.1641 | 0.2198 | 0.2967 | 0.3788 |
21.0042 | 39.0 | 3900 | 27.7720 | 0.2315 | 0.4449 | 0.2182 | 0.1528 | 0.6611 | 0.8214 | 0.0994 | 0.2594 | 0.2994 | 0.2265 | 0.7191 | 0.8594 | 0.1604 | 0.2161 | 0.3026 | 0.3827 |
20.8548 | 40.0 | 4000 | 27.5494 | 0.2315 | 0.4495 | 0.2185 | 0.1535 | 0.6606 | 0.8161 | 0.0981 | 0.2576 | 0.3 | 0.2272 | 0.7189 | 0.8618 | 0.1626 | 0.2224 | 0.3003 | 0.3776 |
Framework versions
- Transformers 4.42.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.18.0
- Tokenizers 0.19.1
- Downloads last month
- 772
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for qubvel-hf/finetune-instance-segmentation-ade20k-mini-mask2former-v1
Base model
facebook/mask2former-swin-tiny-coco-instance