FFNet-54S: Optimized for Mobile Deployment

Semantic segmentation for automotive street scenes

FFNet-54S is a "fuss-free network" that segments street scene images with per-pixel classes like road, sidewalk, and pedestrian. Trained on the Cityscapes dataset.

This model is an implementation of FFNet-54S found here.

This repository provides scripts to run FFNet-54S on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Semantic segmentation
  • Model Stats:
    • Model checkpoint: ffnet54S_dBBB_cityscapes_state_dict_quarts
    • Input resolution: 2048x1024
    • Number of parameters: 18.0M
    • Model size: 68.8 MB
    • Number of output classes: 19
Model Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Precision Primary Compute Unit Target Model
FFNet-54S Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 47.258 ms 2 - 29 MB FP16 NPU FFNet-54S.tflite
FFNet-54S Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 57.733 ms 24 - 42 MB FP16 NPU FFNet-54S.so
FFNet-54S Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 38.058 ms 22 - 118 MB FP16 NPU FFNet-54S.onnx
FFNet-54S Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 31.509 ms 2 - 48 MB FP16 NPU FFNet-54S.tflite
FFNet-54S Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 39.01 ms 23 - 65 MB FP16 NPU FFNet-54S.so
FFNet-54S Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 26.299 ms 28 - 77 MB FP16 NPU FFNet-54S.onnx
FFNet-54S Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 25.725 ms 2 - 51 MB FP16 NPU FFNet-54S.tflite
FFNet-54S Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 42.637 ms 8 - 53 MB FP16 NPU Use Export Script
FFNet-54S Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 26.684 ms 26 - 71 MB FP16 NPU FFNet-54S.onnx
FFNet-54S QCS8550 (Proxy) QCS8550 Proxy TFLITE 47.297 ms 2 - 21 MB FP16 NPU FFNet-54S.tflite
FFNet-54S QCS8550 (Proxy) QCS8550 Proxy QNN 44.317 ms 24 - 27 MB FP16 NPU Use Export Script
FFNet-54S SA7255P ADP SA7255P TFLITE 1013.284 ms 0 - 46 MB FP16 NPU FFNet-54S.tflite
FFNet-54S SA7255P ADP SA7255P QNN 1003.133 ms 24 - 33 MB FP16 NPU Use Export Script
FFNet-54S SA8255 (Proxy) SA8255P Proxy TFLITE 47.314 ms 2 - 37 MB FP16 NPU FFNet-54S.tflite
FFNet-54S SA8255 (Proxy) SA8255P Proxy QNN 44.32 ms 24 - 27 MB FP16 NPU Use Export Script
FFNet-54S SA8295P ADP SA8295P TFLITE 71.213 ms 2 - 47 MB FP16 NPU FFNet-54S.tflite
FFNet-54S SA8295P ADP SA8295P QNN 69.328 ms 24 - 38 MB FP16 NPU Use Export Script
FFNet-54S SA8650 (Proxy) SA8650P Proxy TFLITE 47.144 ms 2 - 28 MB FP16 NPU FFNet-54S.tflite
FFNet-54S SA8650 (Proxy) SA8650P Proxy QNN 43.988 ms 24 - 27 MB FP16 NPU Use Export Script
FFNet-54S SA8775P ADP SA8775P TFLITE 77.552 ms 2 - 49 MB FP16 NPU FFNet-54S.tflite
FFNet-54S SA8775P ADP SA8775P QNN 71.435 ms 24 - 34 MB FP16 NPU Use Export Script
FFNet-54S QCS8450 (Proxy) QCS8450 Proxy TFLITE 62.274 ms 0 - 46 MB FP16 NPU FFNet-54S.tflite
FFNet-54S QCS8450 (Proxy) QCS8450 Proxy QNN 73.367 ms 23 - 64 MB FP16 NPU Use Export Script
FFNet-54S Snapdragon X Elite CRD Snapdragon® X Elite QNN 44.689 ms 24 - 24 MB FP16 NPU Use Export Script
FFNet-54S Snapdragon X Elite CRD Snapdragon® X Elite ONNX 40.899 ms 24 - 24 MB FP16 NPU FFNet-54S.onnx

Installation

Install the package via pip:

pip install "qai-hub-models[ffnet-54s]"

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.ffnet_54s.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.ffnet_54s.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.ffnet_54s.export
Profiling Results
------------------------------------------------------------
FFNet-54S
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 47.3                   
Estimated peak memory usage (MB): [2, 29]                
Total # Ops                     : 115                    
Compute Unit(s)                 : NPU (115 ops)          

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.ffnet_54s import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.ffnet_54s.demo --on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.ffnet_54s.demo -- --on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on FFNet-54S's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of FFNet-54S can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Inference API (serverless) does not yet support pytorch models for this pipeline type.