š Introducing š š¢š«š¬š šš®š š š¢š§š š ššš šš§ššš š«ššš¢šØš§ šØš š¦š¢š§ššš ššØššš„š¬ from the paper ššš«š šššš¬ šš„š„ šš šššššš?
š„ I have integrated š§šš±š-š šš§šš«ššš¢šØš§ šššš¬, specifically minGRU, which offer faster performance compared to Transformer architectures, into HuggingFace. This allows users to leverage the lighter and more efficient minGRU models with the "šš«šš§š¬ššØš«š¦šš«š¬" š„š¢šš«šš«š² for both usage and training.
š» I integrated two main tasks: šš¢š§šššš šØš«šššŖš®šš§šššš„šš¬š¬š¢šš¢šššš¢šØš§ and šš¢š§šššš šØš«ššš®š¬šš„šš.
šš¢š§šššš šØš«šššŖš®šš§šššš„šš¬š¬š¢šš¢šššš¢šØš§: You can use this class for šššŖš®šš§šš šš„šš¬š¬š¢šš¢šššš¢šØš§ tasks. I also trained a Sentiment Analysis model with stanfordnlp/imdb dataset.
šš¢š§šššš šØš«ššš®š¬šš„šš: You can use this class for ššš®š¬šš„ ššš§š š®šš š ššØššš„ tasks such as GPT, Llama. I also trained an example model with roneneldan/TinyStories dataset. You can fine-tune and use it!