|
--- |
|
library_name: peft |
|
license: apache-2.0 |
|
language: |
|
- en |
|
tags: |
|
- medical |
|
- llama2 |
|
--- |
|
|
|
## Inference |
|
|
|
```python |
|
import torch |
|
from peft import PeftModel, PeftConfig |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig |
|
|
|
peft_model_id = "qanastek/MedAlpaca-LLaMa2-7B" |
|
config = PeftConfig.from_pretrained(peft_model_id) |
|
|
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
config.base_model_name_or_path, |
|
quantization_config=bnb_config, |
|
use_auth_token=True, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
model = PeftModel.from_pretrained(model, peft_model_id) |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
def generate( |
|
model: AutoModelForCausalLM, |
|
tokenizer: AutoTokenizer, |
|
prompt: str, |
|
max_new_tokens: int = 128, |
|
temperature: int = 1.0, |
|
) -> str: |
|
|
|
inputs = tokenizer([prompt], return_tensors="pt", return_token_type_ids=False).to(device) |
|
|
|
# with torch.autocast("cuda", dtype=torch.bfloat16): |
|
response = model.generate( |
|
**inputs, |
|
max_new_tokens=max_new_tokens, |
|
temperature=temperature, |
|
return_dict_in_generate=True, |
|
eos_token_id=tokenizer.eos_token_id, |
|
pad_token_id=tokenizer.pad_token_id, |
|
) |
|
|
|
return tokenizer.decode(response["sequences"][0], skip_special_tokens=True)[len(prompt):] |
|
|
|
prompt = "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: We are giving you a scientific question (easy level) and five answers options (associated to « A », « B », « C », « D », « E »). Your task is to find the correct(s) answer(s) based on scientific facts, knowledge and reasoning. Don't generate anything other than one of the following characters : 'A B C D E'. ### Input: Among the following propositions, only one is correct; which? The most active thyroid hormone at the cellular level is: (A) Triiodothyronine (T3) (B) Tetraiodothyronine (T4) (C) 3,3',5'-triiodothyronine (rT3) (D) Thyroglobulin ( E) Triiodothyroacetic acid ### Response:\n" |
|
|
|
response = generate( |
|
model, |
|
tokenizer, |
|
prompt, |
|
max_new_tokens=500, |
|
temperature=0.92, |
|
) |
|
|
|
print(response) |
|
``` |
|
|
|
## Training procedure |
|
|
|
Model: [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) |
|
|
|
The following `bitsandbytes` quantization config was used during training: |
|
- load_in_8bit: False |
|
- load_in_4bit: True |
|
- llm_int8_threshold: 6.0 |
|
- llm_int8_skip_modules: None |
|
- llm_int8_enable_fp32_cpu_offload: False |
|
- llm_int8_has_fp16_weight: False |
|
- bnb_4bit_quant_type: nf4 |
|
- bnb_4bit_use_double_quant: False |
|
- bnb_4bit_compute_dtype: float16 |
|
|
|
### Framework versions |
|
|
|
- PEFT 0.4.0 |