q2-jlbar's picture
update model card README.md
87867e8
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - image_folder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-eurosat
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: image_folder
          type: image_folder
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9618518518518518

swin-tiny-patch4-window7-224-finetuned-eurosat

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the image_folder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1199
  • Accuracy: 0.9619

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3627 0.99 47 0.1988 0.9389
0.2202 1.99 94 0.1280 0.9604
0.1948 2.99 141 0.1199 0.9619

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.11.0
  • Datasets 2.2.2
  • Tokenizers 0.12.1