segformer-b0-finetuned-brooks-or-dunn

This model is a fine-tuned version of nvidia/mit-b0 on the q2-jlbar/BrooksOrDunn dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1158
  • Mean Iou: nan
  • Mean Accuracy: nan
  • Overall Accuracy: nan
  • Per Category Iou: [nan, nan]
  • Per Category Accuracy: [nan, nan]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Per Category Iou Per Category Accuracy
0.5153 4.0 20 0.5276 nan nan nan [nan, nan] [nan, nan]
0.4082 8.0 40 0.3333 nan nan nan [nan, nan] [nan, nan]
0.3157 12.0 60 0.2773 nan nan nan [nan, nan] [nan, nan]
0.2911 16.0 80 0.2389 nan nan nan [nan, nan] [nan, nan]
0.2395 20.0 100 0.1982 nan nan nan [nan, nan] [nan, nan]
0.2284 24.0 120 0.1745 nan nan nan [nan, nan] [nan, nan]
0.1818 28.0 140 0.1595 nan nan nan [nan, nan] [nan, nan]
0.1549 32.0 160 0.1556 nan nan nan [nan, nan] [nan, nan]
0.1351 36.0 180 0.1387 nan nan nan [nan, nan] [nan, nan]
0.1254 40.0 200 0.1263 nan nan nan [nan, nan] [nan, nan]
0.1412 44.0 220 0.1190 nan nan nan [nan, nan] [nan, nan]
0.1179 48.0 240 0.1158 nan nan nan [nan, nan] [nan, nan]

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.11.0
  • Datasets 2.2.2
  • Tokenizers 0.12.1
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.