The model that corresponds to Q-Align (ICML2024).

Quick Start with AutoModel

For this image, start an AutoModel scorer with transformers==4.36.1:

import requests
import torch
from transformers import AutoModelForCausalLM

model = AutoModelForCausalLM.from_pretrained("q-future/one-align", trust_remote_code=True, attn_implementation="eager", 
                                             torch_dtype=torch.float16, device_map="auto")

from PIL import Image
url = "https://raw.githubusercontent.com/Q-Future/Q-Align/main/fig/singapore_flyer.jpg"
image = Image.open(requests.get(url,stream=True).raw)
model.score([image], task_="quality", input_="image")
# task_ : quality | aesthetics; # input_: image | video

Result should be 1.911 (in range [1,5], higher is better).

From paper: arxiv.org/abs/2312.17090.

Syllabus

IQA Results (Spearman/Pearson/Kendall)

Datasets KonIQ (NR-IQA, seen) SPAQ (NR-IQA, Seen) KADID (FR-IQA, Seen) LIVE-C (NR-IQA, Unseen) LIVE (FR-IQA, Unseen) CSIQ (FR-IQA, Unseen) AGIQA (AIGC, Unseen)
Previous SOTA 0.916/0.928 (MUSIQ, ICCV2021) 0.922/0.919 (LIQE, CVPR2023) 0.934/0.937 (CONTRIQUE, TIP2022) NA NA NA NA
Q-Align (IQA) 0.937/0.945/0.785 0.931/0.933/0.763 0.934/0.934/0.777 0.887/0.896/0.706 0.874/0.840/0.682 0.845/0.876/0.654 0.731/0.791/0.529
Q-Align (IQA+VQA) 0.944/0.949/0.797 0.931/0.934/0.764 0.952/0.953/0.809 0.892/0.899/0.715 0.874/0.846/0.684 0.852/0.876/0.663 0.739/0.782/0.526
OneAlign (IQA+IAA+VQA) 0.941/0.950/0.791 0.932/0.935/0.766 0.941/0.942/0.791 0.881/0.894/0.699 0.887/0.856/0.699 0.881/0.906/0.699 0.801/0.838/0.602

IAA Results (Spearman/Pearson)

Dataset AVA_test
VILA (CVPR, 2023) 0.774/0.774
LIQE (CVPR, 2023) 0.776/0.763
Aesthetic Predictor (retrained on AVA_train) 0.721/0.723
Q-Align (IAA) 0.822/0.817
OneAlign (IQA+IAA+VQA) 0.823/0.819

VQA Results (Spearman/Pearson)

Datasets LSVQ_test LSVQ_1080p KoNViD-1k MaxWell_test
SimpleVQA (ACMMM, 2022) 0.867/0.861 0.764/0.803 0.840/0.834 0.720/0.715
FAST-VQA (ECCV 2022) 0.876/0.877 0.779/0.814 0.859/0.855 0.721/0.724
Q-Align (VQA) 0.883/0.882 0.797/0.830 0.865/0.877 0.780/0.782
Q-Align (IQA+VQA) 0.885/0.883 0.802/0.829 0.867/0.880 0.781/0.787
OneAlign (IQA+IAA+VQA) 0.886/0.886 0.803/0.837 0.876/0.888 0.781/0.786
Downloads last month
52,493
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Spaces using q-future/one-align 5

Collection including q-future/one-align