swin-tiny-patch4-window7-224-finetuned-ginger

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6161
  • Accuracy: 0.7112

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2795 0.9973 275 0.8344 0.7773
0.1696 1.9982 551 1.2580 0.6245
0.1425 2.9991 827 1.0643 0.5959
0.1329 4.0 1103 0.8342 0.6281
0.1237 4.9973 1378 1.4786 0.6110
0.0743 5.9982 1654 1.1068 0.6283
0.1083 6.9991 1930 0.8262 0.8321
0.0667 8.0 2206 0.6214 0.7564
0.0743 8.9973 2481 0.7777 0.7342
0.0527 9.9982 2757 0.6794 0.6985
0.076 10.9991 3033 0.7436 0.6429
0.0423 11.9674 3300 0.6161 0.7112

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
188
Safetensors
Model size
27.6M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for pyb-camag/swin-tiny-patch4-window7-224-finetuned-ginger

Finetuned
(492)
this model

Evaluation results