distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert/distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3129
  • Accuracy: {'accuracy': 0.86}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.4795 {'accuracy': 0.85}
0.4131 2.0 500 0.6526 {'accuracy': 0.851}
0.4131 3.0 750 0.6766 {'accuracy': 0.854}
0.2017 4.0 1000 0.9597 {'accuracy': 0.855}
0.2017 5.0 1250 0.9623 {'accuracy': 0.857}
0.1102 6.0 1500 0.9842 {'accuracy': 0.866}
0.1102 7.0 1750 1.1943 {'accuracy': 0.859}
0.023 8.0 2000 1.2874 {'accuracy': 0.859}
0.023 9.0 2250 1.3154 {'accuracy': 0.859}
0.0047 10.0 2500 1.3129 {'accuracy': 0.86}

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for psykick21/distilbert-base-uncased-lora-text-classification

Adapter
(221)
this model