BioBert-PubMed200kRCT
This model is a fine-tuned version of dmis-lab/biobert-base-cased-v1.1 on the PubMed200kRCT dataset. It achieves the following results on the evaluation set:
- Loss: 0.2832
- Accuracy: 0.8934
Model description
More information needed
Intended uses & limitations
The model can be used for text classification tasks of Randomized Controlled Trials that does not have any structure. The text can be classified as one of the following:
- BACKGROUND
- CONCLUSIONS
- METHODS
- OBJECTIVE
- RESULTS
The model can be directly used like this:
from transformers import TextClassificationPipeline
from transformers import AutoTokenizer, AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained("pritamdeka/BioBert-PubMed200kRCT")
tokenizer = AutoTokenizer.from_pretrained("pritamdeka/BioBert-PubMed200kRCT")
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True)
pipe("Treatment of 12 healthy female subjects with CDCA for 2 days resulted in increased BAT activity.")
Results will be shown as follows:
[[{'label': 'BACKGROUND', 'score': 0.0027583304326981306},
{'label': 'CONCLUSIONS', 'score': 0.044541116803884506},
{'label': 'METHODS', 'score': 0.19493348896503448},
{'label': 'OBJECTIVE', 'score': 0.003996663726866245},
{'label': 'RESULTS', 'score': 0.7537703514099121}]]
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.3587 | 0.14 | 5000 | 0.3137 | 0.8834 |
0.3318 | 0.29 | 10000 | 0.3100 | 0.8831 |
0.3286 | 0.43 | 15000 | 0.3033 | 0.8864 |
0.3236 | 0.58 | 20000 | 0.3037 | 0.8862 |
0.3182 | 0.72 | 25000 | 0.2939 | 0.8876 |
0.3129 | 0.87 | 30000 | 0.2910 | 0.8885 |
0.3078 | 1.01 | 35000 | 0.2914 | 0.8887 |
0.2791 | 1.16 | 40000 | 0.2975 | 0.8874 |
0.2723 | 1.3 | 45000 | 0.2913 | 0.8906 |
0.2724 | 1.45 | 50000 | 0.2879 | 0.8904 |
0.27 | 1.59 | 55000 | 0.2874 | 0.8911 |
0.2681 | 1.74 | 60000 | 0.2848 | 0.8928 |
0.2672 | 1.88 | 65000 | 0.2832 | 0.8934 |
Framework versions
- Transformers 4.18.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.18.4
- Tokenizers 0.11.6
Citing & Authors
If you use the model kindly cite the following work
@inproceedings{deka2022evidence,
title={Evidence Extraction to Validate Medical Claims in Fake News Detection},
author={Deka, Pritam and Jurek-Loughrey, Anna and others},
booktitle={International Conference on Health Information Science},
pages={3--15},
year={2022},
organization={Springer}
}
- Downloads last month
- 98
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for pritamdeka/BioBert-PubMed200kRCT
Base model
dmis-lab/biobert-base-cased-v1.1