|
--- |
|
license: llama3 |
|
datasets: |
|
- princeton-nlp/prolong-data-64K |
|
- princeton-nlp/prolong-data-512K |
|
base_model: |
|
- princeton-nlp/Llama-3-8B-ProLong-64k-Base |
|
--- |
|
|
|
# princeton_nlp/Llama-3-8B-ProLong-512k-Base |
|
|
|
[[Paper](https://arxiv.org/pdf/2410.02660)] [[HF Collection](https://huggingface.co/collections/princeton-nlp/prolong-66c72d55d2051a86ac7bd7e4)] [[Code](https://github.com/princeton-nlp/ProLong)] |
|
|
|
|
|
**ProLong** (<u>Pr</u>incet<u>o</u>n <u>long</u>-context language models) is a family of long-context models that are continued trained and supervised fine-tuned from Llama-3-8B, with a maximum context window of 512K tokens. Our [main ProLong model](https://huggingface.co/princeton-nlp/Llama-3-8B-ProLong-512k-Instruct) is one of the best-performing long-context models at the 10B scale (evaluated by [HELMET](https://github.com/princeton-nlp/helmet)). |
|
|
|
To train this strong long-context model, we conduct thorough ablations on the long-context pre-training data, SFT data, and numerous other design choices. We demonstrate our findings in our paper, [How to Train Long-Context Language Models (Effectively)](https://arxiv.org/pdf/2410.02660). |
|
|
|
|
|
Authors: [Tianyu Gao](https://gaotianyu.xyz/about)\*, [Alexander Wettig](https://www.cs.princeton.edu/~awettig/)\*, [Howard Yen](https://howard-yen.github.io/), [Danqi Chen](https://www.cs.princeton.edu/~danqic/) (* equal contribution) |
|
|
|
Contact: `{tianyug, awettig}@princeton.edu` |
|
|
|
## The ProLong Models |
|
|
|
- [princeton_nlp/Llama-3-8B-ProLong-64k-Base](https://huggingface.co/princeton-nlp/Llama-3-8B-ProLong-64k-Base) |
|
- [princeton_nlp/Llama-3-8B-ProLong-64k-Instruct](https://huggingface.co/princeton-nlp/Llama-3-8B-ProLong-64k-Instruct) |
|
- [princeton_nlp/Llama-3-8B-ProLong-512k-Base](https://huggingface.co/princeton-nlp/Llama-3-8B-ProLong-512k-Base) ← you are here! |
|
- ⭐ [princeton_nlp/Llama-3-8B-ProLong-512k-Instruct](https://huggingface.co/princeton-nlp/Llama-3-8B-ProLong-512k-Instruct) |
|
|
|
## Model card |
|
|
|
Here are some quick facts about our main ProLong model: [princeton-nlp/Llama-3-8B-ProLong-512k-Instruct](https://huggingface.co/princeton-nlp/Llama-3-8B-ProLong-512k-Instruct). |
|
* Base model: [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) |
|
* Long-context continued training: 20B tokens on 64K training data ([princeton-nlp/prolong-data-64K](https://huggingface.co/datasets/princeton-nlp/prolong-data-64K)), and 20B tokens on 512K training data ([princeton-nlp/prolong-data-512K](https://huggingface.co/datasets/princeton-nlp/prolong-data-512K)) |
|
* Supervised fine-tuning (SFT): [UltraChat](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) |
|
* Maximum context window: 512K tokens |
|
|
|
|
|
<p align="center" style="margin-bottom: 0;"> |
|
<img width="80%" alt="image" src="https://github.com/user-attachments/assets/c31c9671-49fe-4776-91d2-de70ffd9f9a1"> |
|
</p> |
|
<p align="center" style="margin-top: 0; padding-top: 0;"> |
|
<em>ProLong performance on <a href="https://github.com/princeton-nlp/helmet">HELMET</a> averaged over 32K, 64K, and 128K lengths. All models are instruct models.</em> |
|
</p> |
|
|
|
|
|
<p align="center"> |
|
<img width="80%" alt="image" src="https://github.com/user-attachments/assets/a36a7d0f-4480-4a29-80f3-208477707fb7"> |
|
</p> |
|
<p align="center" style="margin-top: 0;"> |
|
<em>ProLong training recipe.</em> |
|
</p> |
|
|
|
|
|
## Citation |
|
|
|
```bibtex |
|
@article{gao2024prolong, |
|
title={How to Train Long-Context Language Models (Effectively)}, |
|
author={Gao, Tianyu and Wettig, Alexander and Yen, Howard and Chen, Danqi}, |
|
journal={arXiv preprint arXiv:2410.02660}, |
|
year={2024} |
|
} |
|
``` |