metadata
library_name: transformers
tags:
- c4ai-command-r-v01
- chat-template
- cohere
Chat Template Tokenizer for c4ai-command-r-v01
This repository includes a fast tokenizer for CohereForAI/c4ai-command-r-v01 with the Chat Template. The Tokenizer was created by replacing the string values of original tokens with id 255000
(<|START_OF_TURN_TOKEN|>
) and 255001
(<|END_OF_TURN_TOKEN|>
) with the role tokens <|SYSTEM_TOKEN|>
, <|USER_TOKEN|>
and <|CHATBOT_TOKEN|>
.
No new tokens were added during that process to ensure that the original model's embedding doesn't need to be modified.
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("prince-canuma/c4ai-command-r-v01-tokenizer-chat-template")
messages = [
{"role": "user", "content": "Hello, how are you?"},
{"role": "assistant", "content": "I'm doing great. How can I help you today?"},
]
chatml = tokenizer.apply_chat_template(messages, add_generation_prompt=False, tokenize=False)
print(chatml)
# <|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN |>
# <|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>Hello! I'm doing well, thank you for asking! I'm excited to assist you and I'm looking forward to hearing your questions. How can I help you today?<| END_OF_TURN_TOKE NI>
Test
tokenizer = AutoTokenizer.from_pretrained("prince-canuma/c4ai-command-r-v01-tokenizer-chat-template")
original_tokenizer = AutoTokenizer.from_pretrained("CohereForAI/c4ai-command-r-v01")
# get special tokens
print(tokenizer.special_tokens_map)
print(original_tokenizer.special_tokens_map)
# check length of vocab
assert len(tokenizer) == len(original_tokenizer), "tokenizer are not having the same length"