ZenGQ - BERT for Question Answering
This is a fine-tuned BERT model for question answering tasks, trained on a custom dataset.
Model Details
- Model: BERT-base-uncased
- Task: Question Answering
- Dataset: Rep00Zon
Usage
Load the model
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, pipeline
# Load the tokenizer and model from Hugging Face
tokenizer = AutoTokenizer.from_pretrained("prabinpanta0/ZenGQ")
model = AutoModelForQuestionAnswering.from_pretrained("prabinpanta0/ZenGQ")
# Create a pipeline for question answering
qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
# Define your context and questions
contexts = ["Berlin is the capital of Germany.",
"Paris is the capital of France.",
"Madrid is the capital of Spain."]
questions = [
"What is the capital of Germany?",
"Which city is the capital of France?",
"What is the capital of Spain?"
]
# Get answers
for context, question in zip(contexts, questions):
result = qa_pipeline(question=question, context=context)
print(f"Question: {question}")
print(f"Answer: {result['answer']}\n")
Training Details
- Epochs: 3
- Training Loss: 2.050335, 1.345047, 1.204442
Token
text = "Berlin is the capital of Germany. Paris is the capital of France. Madrid is the capital of Spain."
tokens = tokenizer.tokenize(text)
print(tokens)
Output:
['berlin', 'is', 'the', 'capital', 'of', 'germany', '.', 'paris', 'is', 'the', 'capital', 'of', 'france', '.', 'madrid', 'is', 'the', 'capital', 'of', 'spain', '.']
Dataset
The model was trained on the Rep00Zon dataset.
License
This model is licensed under the MIT License.
- Downloads last month
- 132
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.