defect-classification-scibert-baseline-25-epochs

This model is a fine-tuned version of allenai/scibert_scivocab_uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2317
  • Accuracy: 0.9075

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3655 1.0 2124 1.1784 0.8208
0.9439 2.0 4248 0.6611 0.8474
0.7364 3.0 6372 0.5215 0.8561
0.6355 4.0 8496 0.4250 0.8669
0.5592 5.0 10620 0.3694 0.8740
0.5411 6.0 12744 0.3482 0.8754
0.5056 7.0 14868 0.3418 0.8757
0.4838 8.0 16992 0.2492 0.9132
0.469 9.0 19116 0.3220 0.8785
0.4468 10.0 21240 0.2693 0.8964
0.432 11.0 23364 0.2756 0.8913
0.4256 12.0 25488 0.2545 0.9019
0.4158 13.0 27612 0.2431 0.9061
0.3961 14.0 29736 0.2532 0.9001
0.3972 15.0 31860 0.2441 0.9025
0.3931 16.0 33984 0.2456 0.9008
0.3882 17.0 36108 0.2536 0.8971
0.3846 18.0 38232 0.2421 0.9029
0.3806 19.0 40356 0.2547 0.8960
0.3761 20.0 42480 0.2527 0.8956
0.3648 21.0 44604 0.2475 0.8979
0.3684 22.0 46728 0.2333 0.9079
0.3679 23.0 48852 0.2300 0.9095
0.3683 24.0 50976 0.2347 0.9060
0.3632 25.0 53100 0.2317 0.9075

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month

-

Downloads are not tracked for this model. How to track
Safetensors
Model size
110M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for ppak10/defect-classification-scibert-baseline-25-epochs

Finetuned
(68)
this model