distilgpt2-emailgen: V2

colab

Why write the rest of your email when you can generate it?

from transformers import pipeline

model_tag = "postbot/distilgpt2-emailgen-V2"
generator = pipeline(
              'text-generation', 
              model=model_tag, 
            )
            
prompt = """
Hello, 

Following up on the bubblegum shipment."""

result = generator(
    prompt,
    max_length=64,
    do_sample=False,
    early_stopping=True,
) # generate
print(result[0]['generated_text'])

Model description

This model is a fine-tuned version of distilgpt2 on the postbot/multi-emails-100k dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9126

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters (run 1/2)

TODO

Training hyperparameters (run 2/2)

The following hyperparameters were used during training:

  • learning_rate: 0.0006
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
1.9045 1.0 789 2.0006
1.8115 2.0 1578 1.9557
1.8501 3.0 2367 1.9110
1.7376 4.0 3156 1.9126

Framework versions

  • Transformers 4.22.2
  • Pytorch 1.10.0+cu113
  • Datasets 2.5.1
  • Tokenizers 0.12.1

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 24.59
ARC (25-shot) 20.99
HellaSwag (10-shot) 26.78
MMLU (5-shot) 25.53
TruthfulQA (0-shot) 46.51
Winogrande (5-shot) 52.01
GSM8K (5-shot) 0.0
DROP (3-shot) 0.31
Downloads last month
895
Safetensors
Model size
88.2M params
Tensor type
F32
·
U8
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train postbot/distilgpt2-emailgen-V2

Spaces using postbot/distilgpt2-emailgen-V2 2