distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9006
  • Accuracy: 0.8

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1981 1.0 57 2.1804 0.37
1.7932 2.0 114 1.7160 0.62
1.3257 3.0 171 1.2539 0.67
1.1239 4.0 228 1.1187 0.68
0.7457 5.0 285 0.9367 0.73
0.6922 6.0 342 0.7564 0.81
0.5718 7.0 399 0.8179 0.78
0.3729 8.0 456 0.7299 0.79
0.2667 9.0 513 0.6415 0.82
0.4672 10.0 570 0.8068 0.78
0.1392 11.0 627 0.7228 0.81
0.1069 12.0 684 0.7787 0.79
0.0659 13.0 741 0.7720 0.8
0.0291 14.0 798 0.7609 0.79
0.0263 15.0 855 0.8363 0.8
0.0177 16.0 912 0.8796 0.78
0.0166 17.0 969 0.8844 0.79
0.0139 18.0 1026 0.8909 0.8
0.0132 19.0 1083 0.9017 0.8
0.0131 20.0 1140 0.9006 0.8

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.0
  • Tokenizers 0.13.3
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train pollner/distilhubert-finetuned-gtzan