|
--- |
|
license: mit |
|
base_model: |
|
- meta-llama/Llama-3.1-8B-Instruct |
|
pipeline_tag: text-generation |
|
language: |
|
- en |
|
tags: |
|
- medical |
|
--- |
|
|
|
|
|
<div align="center"> |
|
<h1> |
|
MedSSS-8B-Policy |
|
</h1> |
|
</div> |
|
|
|
<div align="center"> |
|
<a href="https://github.com/pixas/MedSSS" target="_blank">GitHub</a> | <a href="" target="_blank">Paper</a> |
|
</div> |
|
|
|
# <span>Introduction</span> |
|
**MedSSS-Policy** is a the policy model designed for slow-thinking medical reasoning. It will conduct explicit step-wise reasoning and finalize the answer at the end of the response. |
|
|
|
For more information, visit our GitHub repository: |
|
[https://github.com/pixas/MedSSS](https://github.com/pixas/MedSSS). |
|
|
|
|
|
|
|
|
|
# <span>Usage</span> |
|
We build the policy model as a LoRA adapter, which saves the memory to use it. |
|
As this LoRA adapter is built on `Meta-Llama3.1-8B-Instruct`, you need to first prepare the base model in your platform. |
|
You can deploy it with tools like [vllm](https://github.com/vllm-project/vllm) or [Sglang](https://github.com/sgl-project/sglang), or perform direct inference: |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from peft import PeftModel |
|
base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-8B-Instruct",torch_dtype="auto",device_map="auto") |
|
model = PeftModel.from_pretrained(base_model, "pixas/MedSSS_Policy", torc_dtype="auto", device_map="auto") |
|
tokenizer = AutoTokenizer.from_pretrained("pixas/MedSSS_Policy") |
|
input_text = "How to stop a cough?" |
|
messages = [{"role": "user", "content": input_text}] |
|
inputs = tokenizer(tokenizer.apply_chat_template(messages, tokenize=False,add_generation_prompt=True |
|
), return_tensors="pt").to(model.device) |
|
outputs = model.generate(**inputs, max_new_tokens=2048) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
``` |
|
|
|
MedSSS-Policy adopts a step-wise reasoning approach, with outputs formatted as: |
|
|
|
``` |
|
Step 0: Let's break down this problem step by step. |
|
Step 1: ... |
|
[several steps] |
|
Step N: [last reasoning step]\n\nThe answer is {answer} |
|
``` |