MobileNet-V2-food

This model is a fine-tuned version of google/mobilenet_v2_1.0_224 on the ItsNotRohit/Food121-224 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6890
  • Accuracy: 0.5793
  • Recall: 0.5793
  • Precision: 0.6006
  • F1: 0.5769

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 128
  • seed: 20329
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • training_steps: 20000

Training results

Training Loss Epoch Step Validation Loss Accuracy Recall Precision F1
2.9653 0.33 2000 2.7802 0.3438 0.3438 0.3932 0.3105
2.3854 0.66 4000 2.3105 0.4440 0.4440 0.4979 0.4336
2.1576 0.99 6000 2.0508 0.4958 0.4958 0.5263 0.4837
1.9767 1.32 8000 1.9860 0.5086 0.5086 0.5504 0.4956
1.9215 1.65 10000 1.8312 0.5462 0.5462 0.5815 0.5390
1.782 1.98 12000 1.8554 0.5441 0.5441 0.5864 0.5431
1.7755 2.31 14000 1.9241 0.5308 0.5308 0.5841 0.5272
1.7006 2.64 16000 1.8625 0.5451 0.5451 0.6004 0.5466
1.7289 2.98 18000 1.8560 0.5432 0.5432 0.5940 0.5395
1.7296 3.31 20000 1.6890 0.5793 0.5793 0.6006 0.5769

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
12
Safetensors
Model size
2.41M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for pitangent-ds/MobileNet-V2-food

Finetuned
(37)
this model